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Assessing water status and optimizing irrigation is of utmost importance in most

winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can

be impaired under certain water stress situations. Conventional plant-based methods for

water status monitoring are either destructive or time and labor demanding, therefore

unsuited to detect the spatial variation of moisten content within a vineyard plot. In

this context, this work aims at the development and comprehensive validation of a

novel, non-destructive methodology to assess the vineyard water status distribution

using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water

status prediction models were built and intensely validated using the stem water

potential (Ψs) as gold standard. Predictive models were developed making use of a vast

number of measurements, acquired on 15 dates with diverse environmental conditions,

at two different spatial scales, on both sides of vertical shoot positioned canopies,

over two consecutive seasons. Different cross-validation strategies were also tested

and compared. Predictive models built from east-acquired spectra yielded the best

performance indicators in both seasons, with determination coefficient of prediction (R2
P)

ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square

error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive

models were implemented to map the spatial variability of the vineyard water status at

two different dates, and provided useful, practical information to help delineating specific

irrigation schedules. The performance and the large amount of data that this on-the-go

spectral solution provides, facilitates the exploitation of this non-destructive technology

to monitor and map the vineyard water status variability with high spatial and temporal

resolution, in the context of precision and sustainable viticulture.

Keywords: grapevine, water stress, stem water potential, non-invasive proximal sensing, PLS

INTRODUCTION

There is a great potential both for monitoring water stress and scheduling irrigation in commercial
orchards (Fernández and Cuevas, 2010). Vineyard water status affects vegetative growth, yield,
grape composition, and wine sensorial attributes (Ojeda et al., 2002; Chapman et al., 2005; Chaves
et al., 2007). Assessing water status and optimizing irrigation are very interesting issues in most
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winegrowing countries. Of the various techniques to appraise
the plant water status, plant-based methods have shown the
advantage of integrating the soil and atmospheric effects
(Jones, 2004). Likewise, the usefulness of different physiological
parameters and their applicability for water stress detection
and irrigation management in grapevines was reviewed by
different authors (Jones, 2004; Acevedo-Opazo et al., 2008;
Jones and Grant, 2016). However, conventional plant-based
methods to monitor water stress, such as those based on the
use of Scholander-type chambers, are destructive as well as
time and labor consuming (Fernández, 2014). Therefore, new
methods for monitoring vineyard water status are needed in
sustainable water management (Fernández, 2014; Jones and
Grant, 2016). In this context, novel tools have been developed
for non-destructive, automated, and continuous measurements
(Rodriguez-Dominguez et al., 2012; Ballester et al., 2014).
Although very reliable and informative, many of these tools
monitor only a single plant in the field therefore, they are
unsuited to detecting spatial variation in water status within a
vineyard (Baluja et al., 2012).

New technologies, sensors and computing are desirable
in viticulture (Fuentes et al., 2012) to assess vineyard
spatial variability. In precision viticulture the usefulness
and convenience of high-spatial resolution information provided
to assess plant water status zones within-vineyards was suggested
by several authors (Acevedo-Opazo et al., 2010; Cohen et al.,
2017). Remote sensing technologies have been applied to
vineyard water status monitoring (Baluja et al., 2012; Bellvert
et al., 2016). Recently, lateral and proximal sensing technologies,
as thermography and near infrared (NIR) spectroscopy have
been also used for on-the-go assessment of vineyard water status
(Diago et al., 2017; Gutiérrez et al., 2017; Fernández-Novales
et al., 2018). Still, it is necessary to take a further step and to
develop reliable, fully tested solutions that make use of this kind
of contactless, proximal sensing technology in the context of
precision viticulture. Thus, the need of a suitable methodology
for fast, on-the-go, vineyard monitoring could be considered as
the next barrier to be crossed, and NIR technologies are prone to
ease this step.

NIR spectroscopy is a powerful analytical technique that
enables rapid and non-destructive data acquisition, easy usage
and little sample preparation, which has been used for in-field
measurements (Cozzolino, 2014). The NIR region is the part
of the electromagnetic spectrum between 750 and 2500 nm,
and it is related to molecular overtones and combinations
of these fundamental vibrations due to the stretching and
bending of N-H, O-H, and C-H groups. For this reason, it
can be used for quantitative and qualitative analyses (Williams
and Norris, 2001). The main constituent that can be found
in leaves is water, so NIR spectral measurements performed
upon their surface would result in high levels of reflectance
linked to O-H bands, i.e., 760, 970, 1,450, and 1,940 nm
(Nicolaï et al., 2007), being this spectral range potentially
informative about water content and behavior. However, spectral
data usually contain a wide number of variables, which
range from several hundreds to thousands of them, a fact
that highly difficults the discovering of direct correlations

between the spectral variables with the trait that needs to be
modeled. Because of this, the help of the multivariate analytical
method of chemometrics is always virtually compulsory.
Currently, statistical algorithms are used for the development
of multivariate models that grants a fair prediction capability
from a spectral input, such as NIR measurements, providing
a reliable tool for building up calibration and prediction
models. Also, different spectral filtering procedures and pre-
processing mathematical techniques are applied to the raw
spectral input to improve the prediction capability of the models
(Geladi et al., 2003; Cozzolino et al., 2011; Dambergs et al.,
2015).

A few studies have investigated the potential of NIR
spectroscopy to enable real-time monitoring of the grapevine
during the ripening process at leaf level, and also to assess a
rapid quality control of plant water status (Santos and Kaye,
2009; De Bei et al., 2011; Gutiérrez et al., 2016; Tardaguila et al.,
2017). These authors have shown the performance of different
NIR portable manual devices in contact with grapevine leaves
to determine the plant water status, either leaf (Ψl) or stem
water potential (Ψs) under field conditions. Two recent works
have evaluated the capability of contactless NIR spectroscopy
mounted on an all-terrain-vehicle for the estimation of grapevine
stomatal conductance (gs) on a stop and go mode (Diago et al.,
2017) and to quantify and discriminate different water regimes in
a commercial vineyard (Fernández-Novales et al., 2018). These
studies did confirm the availability of NIR spectral technology
as a potential methodology for the replacement of classic water
status indicators, suitable for a fast, on-the-go monitoring of
a vineyard plot. Nevertheless, a full proposal in this direction,
involving a wide testing in a real-scenario and in different
seasons, seems to be desirable.

The goal of this work was to develop and validate a new,
non-destructivemethodology for the on-the-go assessment of the
water status of a commercial vineyard making use of contactless
NIR spectroscopy. A comprehensive study that involved the
development of prediction models of a reliable plant water status
indicator, such as the stem water potential was carried out. The
NIR-based built models comprised a high number of samples
acquired at the two sides of the canopy, during two different
seasons, at two spatial scales, and were validated using different
cross-validation approaches. Implementation of such prediction
models to map the spatial variability of the vineyard water status
was also aimed.

MATERIALS AND METHODS

Experimental Layout
The study was conducted in a commercial Tempranillo (Vitis
vinifera L.) vineyard (clone 776 on rootstock Richter 110) located
in Tudelilla, La Rioja, Spain (Lat. 42◦18′ 18.26′′, Long. −2◦7′

14.15′′, Alt. 515m) over two consecutive seasons, from June to
the end of September 2015 and from early July to late August
2016. Grapevines were planted in 2002 (north-south orientation)
with vine spacing of 2.60m between rows and 1.20m between
vines, and trained to a vertically shoot-positioned trellis system
on a double-cordon Royat.
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With the aim of creating an ample variability of grapevine
water status, a completely randomized block design (Hinkelmann
and Kempthorne, 2007) with four blocks and three different
water regimes was set (Figure 1). The three water treatments
were:

• T0: Full irrigation. Two water pipelines were installed and
provided a total of 406.5mm H2O/m

2 in the studied period
in 2015, and 598.0mm H2O/m

2 in 2016.
• T1: Moderate irrigation. One water pipeline was installed. The

total amount of delivered water in the studied period was
221.7mm H2O/m

2 in 2015 and 190.7mm H2O/m
2 in 2016.

• T2: No irrigation. No irrigation was applied during the whole
experiment in any of the two seasons.

For each water regime, four replications (one per block) were
set up, making up a total of 12 replications (Figure 1). Each
replication comprised three adjacent rows and 25 plants in
each row. Of these, only the middle row, and the 15 middle
plants of the 25 vines of this middle row were considered for
measurement. Each group of five vines within the 15 middle
ones of each replication will be named as sub replicate unit
hereafter (Figure 1). The adjacent rows and the first and last
five vines per replication were not considered to avoid any edge
effect. The vines subjected to the water regimes T0 and T1 were

FIGURE 1 | Experimental layout following a completely randomized block

design with four blocks and three irrigation treatments (T0: full irrigation, T1:

moderate irrigation, T2: no irrigation) established in a Tempranillo, vertically

shoot positioned vineyard located in La Rioja (Spain). Close-up of a given field

replicate, involving three adjacent rows, of which the middle one was

monitored with the NIR spectrophotometer, and three vines per replicate were

randomly selected for the measurement of the stem water potential (Ψs), one

per each sub replicate unit.

irrigated at four different equally-distanced times of the day
during 30min each, making up a total of 2 h of watering per
day.

Weather data were recorded at 30min intervals by a
meteorological station property of La Rioja Government, next
to the experimental vineyard. The average air temperature
(T) and relative humidity (RH) were recorded at 30min
intervals in the two seasons. Additionally, for the dates and
time interval at which measurements were taken (solar noon,
between 14:00 and 15:30 h), the vapor pressure deficit (VPD) was
calculated.

On-the-Go Spectral Measurements
On-the-go spectral measurements in the vineyard were carried
out using a NIR spectrometer (PSS 2120, Polytec GmbH,
Waldbronn, Germany) which operates in the wavelength range
1100–2100 nm (4 nm resolution; 251 datapoints per spectrum).
The spectrometer was an active NIR optical device with a
polychromator as reflection light source selector, and Indium
Gallium Arsenide (InGaAs) diode array detectors. The system
includes a sensor head for light emission (by an integrated 20W
tungsten lamp) and capturing, and a processing unit, both linked
by an optical fiber (Figure 2). The whole spectral system was
mounted in the front part of an all-terrain-vehicle (Trail Boss
330, Polaris Industries, Minnesota, USA), aiming to the left
and able to make spectral acquisitions controlled by a physical
trigger while the all-terrain-vehicle is in motion. The sensor head
was placed at a height of 0.95m from the ground, to cover
the mid-upper part of the grapevine’s canopy (just above the
fruiting zone) (Figure 2). The measurements were conducted
contactless (no contact with the canopy occurred), at ∼30 cm
distance from the canopy. The diameter of the measurement
window was 19mm. On-the-go spectral measurements were
acquired on both sides of the canopy (east and west) at
an average speed of 5 km/h and rate of spectral acquisition
of 24Hz.

FIGURE 2 | Illustration of the setup of the near infrared system operating from

the moving all-terrain vehicle for vineyard water status monitoring. (The authors

declare that written and informed consent has been obtained from the

depicted individual in this image, for the publication of this identifiable image).
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Measurement of the Stem Water Potential
(Ψs)
Midday stem water potential (Ψs) was used as the reference
method to assess the plant water status. For each field replication
three random vines within the 15 monitored (Figure 1) were
selected (one vine of the first five plants, another of the centered
five plants, and the third one of the last five plants), and one adult
leaf of the mid-upper part of the canopy per vine was tagged and
its Ψs determined. Therefore, 36 leaves were measured each day,
making a total of 324 measurements of Ψs in season 2015, and
216 in 2016.

Measurements of Ψs were conducted at solar noon (at the
same time interval as spectral acquisition) using a Schölander
pressure bomb (Model 600, PMS Instruments Co., Albany,
USA). Prior to the determination of Ψs, the tagged leaves were
covered with aluminum foil and allowed to dark adaptation
during 1 h.

Spectral Processing
Spectral data handling and calibration models were carried out
with MATLAB (version 8.5.0, The Mathworks Inc., Natick, MA,
USA). PLS Toolbox (version 8.1, Eigenvector Research, Inc.,
Manson, WA, USA) was used for principal component analysis
(PCA) and partial least squares (PLS) regression.

Spectral processing involved several steps. The first one
consisted on the allocation of the acquired spectra to the different
groups of vines within each field replicate. Likewise, for each
date and side of the canopy (east and west), the raw spectra
corresponding to the 15 middle plants (around 360 spectra)
per field replication were equally distributed in three groups
(120 spectra per group): one corresponding to the first five
plants (first sub replicate unit), another to the following five
plants (second sub replicate unit), and the third group of spectra
referred to the last five plants (third sub replicate unit). This
allocation was made on the basis that the speed of the all-terrain
vehicle was kept constant during spectral acquisition. Within
each field replicate, for each of the three sub replicate units, the
average spectrumwas computed. These average spectra were then
linked with their corresponding value of Ψs making up a total
dataset of 324 samples per canopy side in 2015, and a dataset of
216 samples in 2016.

Due to different kind of spectra collected during the
measurements, including gaps, wood, metal, etc., a filtering step
was needed. In order to retain only those spectra corresponding
to grapevine leaves, a spectra comparison was performed using
the “Spectra Comparison & Filtering” tool from the SL Utilities
software (version 3.1, Polytec GmbH, Waldbronn, Germany),
and providing a static, well-taken signature spectrum of a
grapevine leaf for the comparisons.

The third step involved the pre-processing of the average
spectra to remove the effects of light scattering and to compensate
for baseline offset and bias. Several combinations of spectral
pre-processing filters were tested and those yielding the best
prediction outputs were finally chosen. These filters involved
the use of standard normal variate (Barnes et al., 1989; Dhanoa
et al., 1995) and the application of the Savitzky-Golay smoothing
and derivative procedures, selecting distinct values for the

window size and degree of the derivative. Derivatives were used
to accentuate small bands and to resolve overlapping peaks
(Savitzky and Golay, 1964).

In the fourth step, PCA was used to reduce the dimensionality
of the data, to examine any possible grouping and to identify
potential outliers by studying score plots using Q residuals and
Hotelling’s T2 statistic (Brereton, 2003). The Q statistic was
calculated as the sum of squares of the residuals (Jackson, 2003).
Equation (1) shows the Hotelling T2 computation procedure
(Hotelling, 1931), where: p is the number of variables (PC scores
considered); n is the number of samples; and F the critical value
for a Fisher distribution with α confidence level.

T2
p,n,α =

p(n− 1)

n− 1
Fp,n−p,α

Chemometrics and Data Analysis
Calibration, validation, and predictionmodels of grapevine water
status were built using PLS regression, where the processed
spectra were the inputs and the values of Ψs the reference
indicator. PLS has proved to be an accurate, robust, and reliable
chemometric method (Wold et al., 2001) to analyse spectral data,
as it is capable to deal with a vast amount of data, especially
when the number of wavelengths largely surpasses the number
of samples. PLS water status models for Ψs prediction were
built using the 256 spectral datapoints (X matrix) and the Ψs

values (Y matrix) as inputs. Individual models for each season
(2015 and 2016) and a global one involving all data from the
two seasons were developed. Models were built at two different
spatial scales: (a) considering the three Ψs per field replicate
individually (seasons 2015 and 2016), and (b) considering an
average spectrum and Ψs value per field replicate (only in
2015). In the two seasons, models were built for each side of
the canopy independently (east and west) and using data from
both sides. For the latter approach, a new dataset including
spectral measurements from east and west sides datasets was
generated. Special care was taken to make this new dataset as
representative as those corresponding to a single canopy side.
For that purpose, a pseudorandom sample selection of the same
amount of data per canopy side, water regime, and measurement
day was conducted, to end up with a new dataset with a total
number of samples equal to those of the east or west sides. For the
global model of the two seasons, modeling was conducted only
for the east side.

With the aim of building robust models capable of predicting
totally unknown samples, the original dataset of spectra was
split up into two independent datasets: a calibration one
(comprising 80% of all data) and an external validation set
(comprising the remaining 20% of original data). The calibration
dataset was used to train and to perform an internal cross-
validation of the model, while the external validation set was
only utilized for prediction purposes, using the calibration
models. Two different methods of internal cross-validation were
tested: (a) 10-fold venetian blind cross validation, and (b)
leave one day out cross validation. In a n-fold venetian blind
cross validation, each fold i is built taking samples from the
dataset of a n-multiple position until the end of the dataset
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(samples i, i + n, i + 2n, i + 3n, . . . ). Once the folds
are built, a traditional n-fold cross validation is carried out,
in which n models are trained with n–1 folds, and tested
with the remaining fold, rotating the latter until all of them
have been used. The average performance of the n models
is finally computed. The second internal validation approach,
the leave one day out cross validation, is similar to the leave
one out cross validation, in which a single observation (in
this case data from one date) is used to internally validate the
training model built with the remaining observations (remaining
dates). This is repeated such that each observation (each
date) in the original dataset is used once as the validation
data. For each model, the optimal number of latent variables
was selected as that yielding the minimum root mean square

error of cross validation (CV-RMSE). To evaluate the quality
of the best models obtained, the coefficient of determination
(R2) and the root mean square error (RMSE) of calibration
(R2

c, calibration RMSE), cross-validation (R2
cv, CV-RMSE), and

prediction (R2
p, prediction RMSE) were calculated.

Mapping
To illustrate the capability of the developed methodology to
assess the vineyard water status variability, maps of the predicted
values of Ψs in the monitored vineyard plot were built using a
multilevel b-spline interpotation with QGIS 2.18 (Free Software
Foundation, Boston, MA, USA) for two dates, one of season 2015
and another one from season 2016.

TABLE 1 | Average values of air temperature (T), relative humidity (RH), and vapor pressure deficit (VPD) at the time of measurement (solar noon, between 14:00 and

15:30 h, GMT+1 local time) at the vineyard site for the dates of monitoring in season 2015 and 2016.

Variable Date of measurement

Season 2015

23rd Jul 28th Jul 6th Aug 12th Aug 19th Aug 26th Aug 7th Sep 11th Sep 18th Sep

Average air T (◦C) 29.2 28.2 31.6 32.0 26.9 31.1 20.4 25.4 20.4

RH (%) 44.0 35.0 37.5 36.5 20.0 33.5 42.0 50.0 39.0

VPD (kPa) 2.24 2.46 2.97 3.02 2.85 2.99 1.36 1.59 1.43

Season 2016

7th Jul 13th Jul 20th Jul 28th Jul 11th Aug 23rd Aug – – –

Average air T (◦C) 27.2 18.7 29.1 29.2 22.6 32.8 – – –

RH (%) 53.0 48.5 40.5 22.5 38.0 32.5 – – –

VPD (kPa) 1.67 1.31 2.38 3.10 1.74 3.39 – – –

Jul, July; Aug, August; Sep, September.

TABLE 2 | Descriptive statistics of the stem water potential (Ψs) data measured across the dates of the whole experiment in seasons 2015 and 2016, expressed in MPa.

Irrigation treatment Stem water potential (Ψs)

Season 2015

Field replication (n = 108) Grapevine (n = 324)

Min. Max. Mean SD Min. Max. Mean SD

T0-Full irrigation −1.02 −0.71 −0.88 0.105 −1.35 −0.55 −0.85 0.161

T1-Moderate irrigation −1.29 −0.87 −1.17 0.141 −1.65 −0.65 −1.16 0.235

T2-No irrigation −2.02 −1.29 −1.69 0.245 −2.25 −1.10 −1.67 0.284

Irrigation treatment Season 2016

Grapevine (n = 216)

Min. Max. Mean SD

T0-Full irrigation - - - −1.45 −0.75 −1.08 0.151

T1-Moderate irrigation −1.70 −1.00 −1.30 0.160

T2-No irrigation −1.95 −0.85 −1.36 0.254

Results are shown by vine and averaged by field replicate (an averageΨs value was computed from the three individual measurements) for season 2015 and by vine for season 2016.Min,

minimum; Max, maximum; SD, standard deviation.
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RESULTS

Environmental Data and Vineyard Water
Status
The nine dates in 2015, and six dates in 2016, at which
vineyard measurements were taken involved very different
weather conditions, in terms of air T, RH, and VPD. The average
values of air T, RH, and the computed VPD at the time interval
of vineyard monitoring (solar noon) and Ψs measurements in
the two seasons are summarized in Table 1. In season 2015 the

average air T during vineyard monitoring hours ranged from

20.4◦C in September, to 32.0◦C in the first 2 weeks of August,

while the RH varied from 20.0% at mid August to 50% at mid
September. The highest evapotranspiration demand occurred in
August, with values closed to 3.0 kPa, while the lowest demand,
which was less than half the maximum recorded value, happened
during the first week of September (Table 1). In 2016, a larger

range of average air T, RH, and VPD values during vineyard

monitoring hours was recorded. Likewise, average air T ranged
from 18.7◦C (mid July) to 32.8◦C (late August), RH varied from
22.5 to 53.0% and VPD fluctuated from 1.31 kPa at mid July to
3.39 kPa at the third week of August.

The imposed irrigation treatments successfully generated an
ample plant water status variability within the vineyard (Table 2),
and led to significant differences (p < 0.05) in Ψs among them
across the different measuring dates in both seasons (Figure 3).
Considering the individual measurements of grapevine Ψs, these
ranged from −0.55 MPa (no water stress) to −2.25 MPa (severe
water stress) in 2015, and from −0.75 MPa (no water stress)
to −1.95 MPa (severe water stress) in 2016 (Van Leeuwen
et al., 2009). At field replication (only for season 2015) level, in
which the three individualΨs measurements per replication were
averaged, the Ψs ranged from −0.71 MPa (no water stress) to
−2.02 MPa (severe water stress) (Table 2).

In 2015, as the season progressed, the Ψs of plants subjected
to irrigation (T0 and T1) slightly decreased until the 12th of

FIGURE 3 | Evolution of the stem water potential (Ψs) for each irrigation treatment (T0: full irrigation, T1: moderate irrigation, T2: no irrigation) across the ripening

season in (A) 2015 and (B) 2016. For each date, the averaged data (n = 12) for each irrigation treatment was represented. Error bars correspond to the standard

error. Significant differences among the three irrigation treatments at *p < 0.05, **p < 0.01, or ***p < 0.001 were observed at all dates. (T0 is represented by white

dots and dotted line; T1 is represented by black dots and dashed line; T2 is represented by black triangles and solid line).
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August and remained constant or even increased from the 26th
August onwards, to drop again in the last week of measurement
(Figure 3A). The recovery of the Ψs values in irrigated plants
from the end of August was caused by the lower evaporative
demand (lower VPD, Table 1) and some rains occurring at the
beginning of September (data not shown). In the case of non-
irrigated vines (T2) their water status steadily diminished (more
negative values of Ψs) until the 7th of September, and slightly
recovered also after the September rains (Figure 3A). In 2016, a
slight decreasing trend ofΨs was observed for all treatments until
the 28th of July (Figure 3B). From then onwards theΨs remained
mostly constant for T0 and became more negative for T1 and T2.
The differences in Ψs for T1 and T2 in season 2016 (Figure 3B)
weremuch lessmarked than those from season 2015 (Figure 3A).

Spectral Measurements and Regression
Models for Grapevine Water Status
Assessment
The absorbance spectra of the grapevine canopies in the
wavelength range of study (1,100–2,100 nm) (Figure 4A) and
their first-derivative signal (Figure 4B) clearly revealed two

FIGURE 4 | Absorbance (A) raw, and (B) first derivative spectra acquired

on-the-go (at 5 km/h) in the vineyard, on the east side of the canopy along nine

dates from July to September 2015.

absorption peaks, at ∼1,450 nm, which corresponded to the first
overtone of the symmetric and asymmetric hydroxyl (OH) bond
stretching and/or combination bands, and around 1,940 nm,
which can be assigned to the combination of the OH stretching
and bending bands. Stretching, bending, and combinations are
vibrational reactions of the organic groups to the electromagnetic
excitation induced by NIR spectroscopy. Since leaves are mostly
constituted by water, the prevalence of the OH group absorbance
in their NIR spectra is well-justified (Nicolaï et al., 2007).

Table 3 summarizes the best regression models ofΨs obtained
for each canopy side and the two sides, at the two scale levels: at
field replication scale (only for season 2015), and at a smaller, sub
replication unit scale, for both seasons (2015 and 2016). Diverse
pre-processing operations were applied for east, west and the
two-side models, but all of them involved the Savitzky-Golay
first derivative, although the size of the window (7 vs. 15) varied
among the models. Following the Residuals (Q) and Hotelling
values (T2) 9.9% of the in-field acquired spectra were considered
samples with atypical spectra and removed in 2015, and 3.7%
in 2016. Likewise, in season 2015, of the 324 sub replicate unit
spectra, 32 were discarded, while from the 108 field replicate
spectra, only four were removed. In 2016 only eight samples were
discarded. The number of latent variables to build the models
was eight in all cases in 2015, and nine in 2016 and the global
approach (2015 and 2016). In general, the models built at the
field replicate scale (season 2015) showed better performance
indicators (larger values of R2 and smaller RMSE) than those
generated from the sub replicate units’ data (Table 3). In the two
seasons, the best models were obtained using the spectra acquired
from the east side, with calibration and cross validation R2 values
ranging from 0.79 to 0.90, and 0.71 to 0.83 respectively, and
calibration RMSE and CV-RMSE below 0.173 and 0.203 MPa,
respectively in 2015, and 0.103 and 0.119 MPa in 2016. Similarly,
a noteworthy performance was also observed for the prediction
models (external validation), with R2

p above 0.85 and prediction
RMSE around 0.150 MPa for the two modeling scales in 2015,
and R2

p equal to 0.68 and prediction RMSE of 0.132 MPa in
2016. The performance of the models derived from the east &
west dataset, comprising spectral data from the two sides of the
canopy, was also remarkable, with R2 and RMSE values that lied
within those of the individual, east and west models (Table 3).

The regression plots for the best prediction models for
Ψs corresponding to seasons 2015 and 2016 are shown in
Figures 5, 6, respectively. In 2015, a wide data range was covered
by the samples, from −2.20 to −0.60 MPa. All samples from
the Ψs models [east (Figures 5A,B), west (Figures 5C,D), and
east & west (Figures 5E,F)] exhibited a very good fit along the
correlation lines and were mostly within the 95% confidence
bands. In season 2016 (Figure 6), the range of Ψs (from −1.95
to −0.75 MPa) was shorter than that of 2015 but similarly to
the previous year, samples mostly lied within the 95% prediction
confidence intervals.

The global model, involving data from the two seasons (2015
and 2016), was only built for the east side, as it was the one
yielding the best performance results in the individual models
for each year. Values of R2 ∼ 0.70 and RMSE ∼0.190 MPa were
obtained for calibration, cross validation (10-fold) and prediction
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TABLE 3 | Calibration and validation statistics of the best models obtained to predict the midday stem water potential (Ψs) in grapevines under field conditions from

on-the-go NIR spectroscopy at the sub-replicate unit, and field replicate scales.

Modeling variables and scale Calibrationa Cross validationa Predictionc

10-fold LODOb

Season Canopy side Spectral treatment RMSE R2
c CV-RMSE R2

cv CV-RMSE R2
cv RMSE R2

p

Sub Replicate Unit

East SNV+D1W15 0.156 0.86 0.171 0.83 0.192 0.77 0.151 0.86

West SNV+D1W15 0.195 0.78 0.214 0.73 0.251 0.71 0.188 0.78

East & West SNV+D1W7 0.168 0.83 0.190 0.79 0.253 0.72 0.173 0.81

Field Replicate

2015 East D1W15 0.173 0.90 0.171 0.82 0.203 0.79 0.150 0.85

West SNV+D1W15 0.160 0.85 0.207 0.74 0.222 0.82 0.194 0.74

East & West D1W7 0.132 0.89 0.189 0.79 0.230 0.81 0.167 0.84

Sub Replicate Unit

2016 East SNV+D1W15 0.103 0.79 0.119 0.71 – – 0.132 0.68

West D1W7 0.111 0.77 0.131 0.68 – – 0.131 0.54

East & West D1W7 0.106 0.78 0.128 0.68 – – 0.133 0.62

Sub Replicate Unit

2015 & 2016 East SNV+D1W15 0.178 0.74 0.187 0.71 0.227 0.59 0.191 0.69

aNumber of samples (n) used for the development of calibration and cross validation (10-fold) models. Season 2015: 234 for East and East & West, and 238 for West models at the

sub replicate unit scale. At the field replicate level, 84 data were used for East and 86 for West, and East & West models. Season 2016: 165 samples for East, West and East &West

models. Seasons 2015 & 2016: 384 samples.
bNumber of samples (n) used for the development of cross validation models using the LODO approach. Season 2015: 318 for East and East and East & West, and 324 for West

models at the sub replicate unit scale. At the field replicate level, 102 data were used for East and 104 for West, and East & West models. Seasons 2015 & 2016: 496 samples.
cNumber of samples (n) used for prediction or external validation. Season 2015: 54 for all canopy side models at the sub replicate unit scale, and 18 at the field replicate level. Season

2016: 43 samples for East, West and East &West models. Seasons 2015 & 2016: 97 samples.

SNV, standard normal variate; DnWm, Savitzky-Golay filter with n-degree derivative, window size of m; RMSE, root mean square error (MPa); R2
c , determination coefficient of calibration;

CV-RMSE, root mean square error of cross-validation (MPa); R2
cv , determination coefficient of cross-validation; R

2
p, determination coefficient of prediction; 10-fold, 10-fold venetian blind

cross validation; LODO, leave one day out cross validation.

using the 15 measuring dates of the two seasons altogether
(Table 3). For the best prediction global model (Figure 7),
samples fitted along the correlation line and mostly lied within
the 95% confidence intervals.

The two cross validation methods tested yielded similar
results, although improved performance in terms of CV-RMSE
(lower values) were obtained for the 10-fold venetian blind
approach (Table 3).

Mapping of the Vineyard Water Status
The spatial variability of the vineyard water status at two given
dates of season 2015 (Figure 8A) and 2016 (Figure 8B) was
computed and presented as maps from the predicted values of
Ψs obtained using the external prediction models from the NIR
spectra acquired on-the-go. The most stressed vines (with more
negative Ψs values) were found on the west side of the plot and
toward the north east, while the plants in the east and north west
parts of the plot exhibited little to no water stress.

DISCUSSION

A novel, non-destructive methodology based on NIR
spectroscopy acquired on-the-go, to assess the vineyard water
status has been developed and validated over two seasons. The

presented results evidence the capability of on-the-go proximal
NIR spectroscopy to successfully determine the grapevine water
status in a commercial vineyard, using robust and reliable
prediction models for the quantification of midday stem
water potential (Ψs), which is a widely-used plant water status
indicator (Choné et al., 2001). The outcomes obtained from a
comprehensive internal (cross validation) and external validation
(prediction) of the method over several dates, from pre-veraison
to harvest over two seasons, with substantial differences in the
environmental conditions of air temperature, relative humidity,
and vapor pressure deficit, confirm the robustness and soundness
of the developed on-the-go NIR spectroscopy method for plant
water status assessment.

The physical principle underlying the interaction between the
electromagnetic radiation at the NIR wavelength used in the
present work (1,100–2,100 nm) and the grapevine canopy leaves,
calls for a predominant absorbance by the OH group of water,
which constitutes between 80 and 90% of living cells (Williams,
2000). Likewise, the spectral response by the water molecules
of plant leaves to NIR radiation in the range between 1000 and
2500 nm has motivated previous studies in which plant water
status was successfully assessed from NIR spectroscopy acquired
manually with portable devices in several crops (Santos and Kaye,
2009; De Bei et al., 2011; Vila et al., 2011; Poblete-Echeverría
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FIGURE 5 | Regression plots of Ψs estimation using the best PLS models developed from data of season 2015 at the sub replication unit scale (A,C,E) for (A) east

(R2
p = 0.86; Prediction RMSE = 0.15 MPa), (C) west (R2

p = 0.78; Prediction RMSE = 0.19 MPa), and (E) east & west (R2
p = 0.81; Prediction RMSE = 0.17 MPa)

sides of the canopy. At the field replication scale (B,D,F) for (B) east (R2
p = 0.90; Prediction RMSE = 0.14 MPa), (D) west (R2

p = 0.74; Prediction RMSE = 0.19 MPa),

and (F) east & west (R2
p = 0.84; Prediction RMSE = 0.17 MPa) sides of the canopy. (©) 10-fold cross validation; (�) prediction. Solid line represents the regression

line and dotted line refers to the 1:1 line. Prediction confidence bands are shown at a 95% level (dashed lines).

et al., 2014; Gutiérrez et al., 2016; Tardaguila et al., 2017). While
the outcomes obtained in these studies were satisfactory and
encouraging, manual methods are time consuming and labor
demanding, therefore unsuitable for the acquisition of many
measurements within a limited time frame in a vineyard plot,
necessary to characterize the spatial variability of vineyard water
status. One step forward was recently taken by Diago et al. (2017),

who estimated the stomatal conductance (gs) of grapevines using
a NIR spectrophotometer mounted on an all-terrain-vehicle
that acquired spectral measurements at 25 and 50 cm from the
canopy while the vehicle was stopped, facing the targeted vine.
In the present work, not only was spectral acquisition carried
out contactless, at 30 cm from the canopy, but also on-the-go,
from a vehicle moving at a speed commonly used by agricultural
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FIGURE 6 | Regression plots of Ψs estimation using the best PLS models

developed from data of season 2016 at the sub replication unit scale for (A)

east (R2
p = 0.68; Prediction RMSE = 0.132 MPa), (B) west (R2

p = 0.54;

Prediction RMSE = 0.131 MPa), and (C) east & west (R2
p = 0.62; Prediction

RMSE = 0.133 MPa) sides of the canopy. (©) 10-fold cross validation; (�)

prediction. Solid line represents the regression line and dotted line refers to the

1:1 line. Prediction confidence bands are shown at a 95% level (dashed lines).

vehicles in vineyard operations. This advance toward automated,
on-the-go monitoring of the plant water status features a real
capability of vineyard water status variability assessment, with a

FIGURE 7 | Regression plots of Ψs estimation using the best PLS model

developed from data of seasons 2015 and 2016 at the sub replication unit

scale for the east side of the canopy (R2
p = 0.69; Prediction RMSE = 0.191

MPa (©) 10-fold cross validation; (�) prediction. Solid line represents the

regression line and dotted line refers to the 1:1 line. Prediction confidence

bands are shown at a 95% level (dashed lines).

performance in terms of R2
p and sensitivity (prediction RMSE)

similar or superior to the manual (Santos and Kaye, 2009; De Bei
et al., 2011; Vila et al., 2011; Gutiérrez et al., 2016; Tardaguila et al.,
2017) and stop-and-go approaches (Diago et al., 2017).

The sensitivity of the on-the-go NIR spectroscopy in-field
monitoring to predict the Ψs ranged from 0.131 to ∼0.190
MPa, regardless the scale. Compared to other technologies,
such as thermography, aimed at non-destructively assessing
the plant water status, the sensitivity of the presented on-the-
go NIR spectroscopy is similar to that provided by aerial or
manual thermal imaging (García-Tejero et al., 2016). However,
a remarkable benefit of on-the-go NIR spectroscopy over
thermography is the lack of temperature references, such as
Tdry and Twet (Jones, 1999) needed to compute the most
widely used thermal indices, such as the crop water stress index
(CWSI) (Idso et al., 1981) and the Jones index (Ig) (Jones
et al., 2002) More specifically, over aerial thermography, the
advantages of proximal, on-the-go NIR spectroscopy also include
the measurement of the lateral side of the canopy instead of the
zenithal view (Baluja et al., 2012), a higher temporal flexibility
for revisiting (measurement of a given vineyard at several dates
across the season), the larger operational times (no batteries of
limited power are used), and the absence of legal issues.

In vineyards planted with north-south row orientation, such
as the one of this study, the spectral information procured from
the east side (morning side) of the canopy generated more
accurate predictions of Ψs than the spectra corresponding to
the west side. This was evidenced by the higher values of R2

cv

and R2
p and smaller values of CV-RMSE and prediction RMSE

of the east-derived models. The choice of row orientation in
vineyard establishment has a strong impact on the environmental
conditions of the two canopy sides, especially in terms of
sun radiation. The influence of sun radiation in leaf structural
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FIGURE 8 | Maps of the spatial variability of the plant water status using the predicted values of stem water potential (Ψstem) obtained from the models built from NIR

spectra acquired on-the-go at 5 km/h on the east side of the canopy on the (A) 11th September 2015 and (B) 23rd August 2016.

features (Hanson, 1917) is well-recognized, and the effect of leaf
structural changes in its physiological response (Lo Gullo and
Salleo, 1988) and reflectance values in the NIR range between
750 and 1,350 nm against water constraints is also demonstrated
(Slaton et al., 2001). The wavelength range used in the present
study (1,100–2,100 nm) partly includes the NIR range sensitive
to differences in leaf structure. Therefore, differences in leaf
structural properties between leaves from the east and west sides
of a grapevine canopy may exist, and the acquired NIR spectra
may have perceived them. As a result, the models built from
east and west side spectra exhibited differential performances in
predicting Ψs. Nevertheless, the models generated from spectra
acquired on the two sides of the canopy also yielded very
satisfactory results. From a practical point of view, this would
imply the possibility of taking spectral measurements either from
the east or west side of the vineyard rows, depending on the
direction in which the vehicle moves along the rows, and the
frequency of measurements (e.g., every other row, one row every
four rows, etc.).

Several factors borne in mind in the validation of the present
method account for its robustness. These include: two spatial
scales (field replication and sub replication unit), two cross
validation approaches (10-fold venetian blinds and leave one
day out cross validation), and the inclusion of a large number
of data taken at different dates under changing environmental
conditions. With regard to the spatial scale, on-the-go NIR
spectroscopy has proved to successfully assess the plant water
status either at a 6m (sub replication unit) or 30m (field
replication) long sections of vineyard row in the studied plot. This
“spatial resolution” may vary across vineyard plots depending
on their soil variability and topography. However, the rate of

acquisition of the spectral system (24Hz, that is 24 spectra per
second) is high enough to provide about 18 spectra per rowmeter
(e.g., it can be assimilated to one vine, depending on the inter
row spacing), provided the all-terrain vehiclemoves at 5 km/h. Of
the two cross validation approaches, the leave one day out cross
validation was selected and tested by its practical implications
as it mimics the estimation of the plant water status values of a
day of measurements using a model built previously with data
from other dates. Therefore, in a real situation, the assessment
of the water status within a vineyard at a given date, using the
developed on-the-go NIR spectroscopy could be done following
the leave one day out cross validation approach (in which no
reference data at the day of interest is needed) or pursuing the
external prediction approach, for which some reference data (Ψs)
of a limited number of control points have to be taken to feedback
the model. The performance of this second option is superior
to the leave one day out cross validation approach, especially
in terms of sensitivity (0.0546 MPa on average), but the lack
of any reference sampling in the latter may counterbalance the
drop in accuracy (lower R2 and higher SE). Differences between
the two approaches may be shortened or enlarged depending
upon themagnitude of variation in the environmental conditions
between the unknown date and those used to build the model.
In this context the third factor emerges. In the present study,
nine dates with substantial differences in air T, RH, and VPD
were included to develop and validate the model. This ensures
its robustness and prevents overfitting, which is the limitation
to proper usage of the predictive model in days with very
similar environmental conditions to those of the dates involved
in model development. For a given location, an initially built
model could become more robust by including some reference
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data from different days and seasons on a dynamic basis (model
feedback). Similarly, models can be either site-specific or involve
different plots; either variety-specific or multi-variety. The choice
for one option or another is equally valid, provided a good
calibration, encompassing representative samples of the potential
variability to account for that of the unknown population is
conducted.

The capability of on-the-go NIR spectroscopy to assess the
grapevine water status and the large number of measurements
this technique can provide in a flexible and reliable way, enables
the quantification and mapping of the variability of the plant
water status of a vineyard. As observed in the maps for two given
dates in seasons 2015 and 2016, two differentiated zones of plant
water status within the studied plot could be delineated (green vs.
other than green areas in the maps of this work) and separately
irrigated using different watering doses and schedules. Hence,
these vineyard water status maps obtained from the NIR-based
predicted values of Ψs are very valuable for the wine industry,
in terms of sustainability and cost savings (e.g., Water and energy
saving) particularly in the current woldwide scenario of increased
water scarcity.

Although the on-the-go NIR spectroscopy proximal method
has proven to successfully monitor the spatial variability of
the grapevine water status within a vineyard, further research
involving a wider range of grapevine cultivars, seasons, and
locations should be conducted with the goal of developing even
more accurate and robust, global predictive models. Another
approach to be tested would involve the identification of the
most discriminant wavelengths in the spectral range of operation
in the built models. This would open a new line of research
that could potentially enable the definition and computation of
spectral indices in this NIR region, which respond to the plant
water status changes.

CONCLUSION

A helpful tool to assess the plant water status in vineyards
involving proximal NIR spectroscopy, acquired on-the-go from
a moving vehicle has been generated and extensively validated
against the stem water potential, which is a widely used plant

water status indicator. The developedmodels proved to be robust
and capable of yield water status estimations in commercial

vineyards. Their performance and the vast amount of data
that this on-the-go spectral solution provides, facilitates the
exploitation of this non-destructive technology to appraise and
map the vineyard water status variability with a high spatial and
temporal resolution. This spectral system could be installed in
any agricultural vehicle and its measurements would be of great
interest and help to the grape and wine industry to define and
schedule precise irrigation strategies.
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