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Assessing water status and optimizing irrigation is of utmost importance in most
winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can
be impaired under certain water stress situations. Conventional plant-based methods for
water status monitoring are either destructive or time and labor demanding, therefore
unsuited to detect the spatial variation of moisten content within a vineyard plot. In
this context, this work aims at the development and comprehensive validation of a
novel, non-destructive methodology to assess the vineyard water status distribution
using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water
status prediction models were built and intensely validated using the stem water
potential (W) as gold standard. Predictive models were developed making use of a vast
number of measurements, acquired on 15 dates with diverse environmental conditions,
at two different spatial scales, on both sides of vertical shoot positioned canopies,
over two consecutive seasons. Different cross-validation strategies were also tested
and compared. Predictive models built from east-acquired spectra yielded the best
performance indicators in both seasons, with determination coefficient of prediction (R,%)
ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square
error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive
models were implemented to map the spatial variability of the vineyard water status at
two different dates, and provided useful, practical information to help delineating specific
irrigation schedules. The performance and the large amount of data that this on-the-go
spectral solution provides, facilitates the exploitation of this non-destructive technology
to monitor and map the vineyard water status variability with high spatial and temporal
resolution, in the context of precision and sustainable viticulture.

Keywords: grapevine, water stress, stem water potential, non-invasive proximal sensing, PLS

INTRODUCTION

There is a great potential both for monitoring water stress and scheduling irrigation in commercial
orchards (Ferndndez and Cuevas, 2010). Vineyard water status affects vegetative growth, yield,
grape composition, and wine sensorial attributes (Ojeda et al., 2002; Chapman et al., 2005; Chaves
et al., 2007). Assessing water status and optimizing irrigation are very interesting issues in most
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winegrowing countries. Of the various techniques to appraise
the plant water status, plant-based methods have shown the
advantage of integrating the soil and atmospheric effects
(Jones, 2004). Likewise, the usefulness of different physiological
parameters and their applicability for water stress detection
and irrigation management in grapevines was reviewed by
different authors (Jones, 2004; Acevedo-Opazo et al, 2008;
Jones and Grant, 2016). However, conventional plant-based
methods to monitor water stress, such as those based on the
use of Scholander-type chambers, are destructive as well as
time and labor consuming (Fernandez, 2014). Therefore, new
methods for monitoring vineyard water status are needed in
sustainable water management (Fernandez, 2014; Jones and
Grant, 2016). In this context, novel tools have been developed
for non-destructive, automated, and continuous measurements
(Rodriguez-Dominguez et al., 2012; Ballester et al, 2014).
Although very reliable and informative, many of these tools
monitor only a single plant in the field therefore, they are
unsuited to detecting spatial variation in water status within a
vineyard (Baluja et al., 2012).

New technologies, sensors and computing are desirable
in viticulture (Fuentes et al, 2012) to assess vineyard
spatial variability. In precision viticulture the usefulness
and convenience of high-spatial resolution information provided
to assess plant water status zones within-vineyards was suggested
by several authors (Acevedo-Opazo et al., 2010; Cohen et al,
2017). Remote sensing technologies have been applied to
vineyard water status monitoring (Baluja et al., 2012; Bellvert
et al,, 2016). Recently, lateral and proximal sensing technologies,
as thermography and near infrared (NIR) spectroscopy have
been also used for on-the-go assessment of vineyard water status
(Diago et al.,, 2017; Gutiérrez et al.,, 2017; Ferndndez-Novales
et al.,, 2018). Still, it is necessary to take a further step and to
develop reliable, fully tested solutions that make use of this kind
of contactless, proximal sensing technology in the context of
precision viticulture. Thus, the need of a suitable methodology
for fast, on-the-go, vineyard monitoring could be considered as
the next barrier to be crossed, and NIR technologies are prone to
ease this step.

NIR spectroscopy is a powerful analytical technique that
enables rapid and non-destructive data acquisition, easy usage
and little sample preparation, which has been used for in-field
measurements (Cozzolino, 2014). The NIR region is the part
of the electromagnetic spectrum between 750 and 2500 nm,
and it is related to molecular overtones and combinations
of these fundamental vibrations due to the stretching and
bending of N-H, O-H, and C-H groups. For this reason, it
can be used for quantitative and qualitative analyses (Williams
and Norris, 2001). The main constituent that can be found
in leaves is water, so NIR spectral measurements performed
upon their surface would result in high levels of reflectance
linked to O-H bands, ie., 760, 970, 1,450, and 1,940 nm
(Nicolai et al,, 2007), being this spectral range potentially
informative about water content and behavior. However, spectral
data usually contain a wide number of variables, which
range from several hundreds to thousands of them, a fact
that highly difficults the discovering of direct correlations

between the spectral variables with the trait that needs to be
modeled. Because of this, the help of the multivariate analytical
method of chemometrics is always virtually compulsory.
Currently, statistical algorithms are used for the development
of multivariate models that grants a fair prediction capability
from a spectral input, such as NIR measurements, providing
a reliable tool for building up calibration and prediction
models. Also, different spectral filtering procedures and pre-
processing mathematical techniques are applied to the raw
spectral input to improve the prediction capability of the models
(Geladi et al.,, 2003; Cozzolino et al., 2011; Dambergs et al.,
2015).

A few studies have investigated the potential of NIR
spectroscopy to enable real-time monitoring of the grapevine
during the ripening process at leaf level, and also to assess a
rapid quality control of plant water status (Santos and Kaye,
2009; De Bei et al., 2011; Gutiérrez et al., 2016; Tardaguila et al.,
2017). These authors have shown the performance of different
NIR portable manual devices in contact with grapevine leaves
to determine the plant water status, either leaf (V) or stem
water potential (Ws) under field conditions. Two recent works
have evaluated the capability of contactless NIR spectroscopy
mounted on an all-terrain-vehicle for the estimation of grapevine
stomatal conductance (gs) on a stop and go mode (Diago et al.,
2017) and to quantify and discriminate different water regimes in
a commercial vineyard (Fernandez-Novales et al., 2018). These
studies did confirm the availability of NIR spectral technology
as a potential methodology for the replacement of classic water
status indicators, suitable for a fast, on-the-go monitoring of
a vineyard plot. Nevertheless, a full proposal in this direction,
involving a wide testing in a real-scenario and in different
seasons, seems to be desirable.

The goal of this work was to develop and validate a new,
non-destructive methodology for the on-the-go assessment of the
water status of a commercial vineyard making use of contactless
NIR spectroscopy. A comprehensive study that involved the
development of prediction models of a reliable plant water status
indicator, such as the stem water potential was carried out. The
NIR-based built models comprised a high number of samples
acquired at the two sides of the canopy, during two different
seasons, at two spatial scales, and were validated using different
cross-validation approaches. Implementation of such prediction
models to map the spatial variability of the vineyard water status
was also aimed.

MATERIALS AND METHODS
Experimental Layout

The study was conducted in a commercial Tempranillo (Vitis
vinifera L.) vineyard (clone 776 on rootstock Richter 110) located
in Tudelilla, La Rioja, Spain (Lat. 42°18" 18.26”, Long. —2°7’
14.15”, Alt. 515m) over two consecutive seasons, from June to
the end of September 2015 and from early July to late August
2016. Grapevines were planted in 2002 (north-south orientation)
with vine spacing of 2.60 m between rows and 1.20 m between
vines, and trained to a vertically shoot-positioned trellis system
on a double-cordon Royat.
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With the aim of creating an ample variability of grapevine
water status, a completely randomized block design (Hinkelmann
and Kempthorne, 2007) with four blocks and three different
water regimes was set (Figure 1). The three water treatments
were:

e TO: Full irrigation. Two water pipelines were installed and
provided a total of 406.5mm H,O/m? in the studied period
in 2015, and 598.0 mm H,O/m? in 2016.

e T1: Moderate irrigation. One water pipeline was installed. The
total amount of delivered water in the studied period was
221.7 mm H,0/m? in 2015 and 190.7 mm H,0O/m? in 2016.

e T2: No irrigation. No irrigation was applied during the whole
experiment in any of the two seasons.

For each water regime, four replications (one per block) were
set up, making up a total of 12 replications (Figure 1). Each
replication comprised three adjacent rows and 25 plants in
each row. Of these, only the middle row, and the 15 middle
plants of the 25 vines of this middle row were considered for
measurement. Each group of five vines within the 15 middle
ones of each replication will be named as sub replicate unit
hereafter (Figure 1). The adjacent rows and the first and last
five vines per replication were not considered to avoid any edge
effect. The vines subjected to the water regimes TO and T1 were

O Edge-vine
@ Monitored vine
% Random vine

) Sub replicate unit

2806

~—

X

() Sub replicate unit

8,82¢

) Sub replicate unit

FIGURE 1 | Experimental layout following a completely randomized block
design with four blocks and three irrigation treatments (TO: full irrigation, T1:
moderate irrigation, T2: no irrigation) established in a Tempranillo, vertically
shoot positioned vineyard located in La Rioja (Spain). Close-up of a given field
replicate, involving three adjacent rows, of which the middle one was
monitored with the NIR spectrophotometer, and three vines per replicate were
randomly selected for the measurement of the stem water potential (Ws), one
per each sub replicate unit.

irrigated at four different equally-distanced times of the day
during 30 min each, making up a total of 2h of watering per
day.

Weather data were recorded at 30min intervals by a
meteorological station property of La Rioja Government, next
to the experimental vineyard. The average air temperature
(T) and relative humidity (RH) were recorded at 30min
intervals in the two seasons. Additionally, for the dates and
time interval at which measurements were taken (solar noon,
between 14:00 and 15:30 h), the vapor pressure deficit (VPD) was
calculated.

On-the-Go Spectral Measurements

On-the-go spectral measurements in the vineyard were carried
out using a NIR spectrometer (PSS 2120, Polytec GmbH,
Waldbronn, Germany) which operates in the wavelength range
1100-2100 nm (4 nm resolution; 251 datapoints per spectrum).
The spectrometer was an active NIR optical device with a
polychromator as reflection light source selector, and Indium
Gallium Arsenide (InGaAs) diode array detectors. The system
includes a sensor head for light emission (by an integrated 20 W
tungsten lamp) and capturing, and a processing unit, both linked
by an optical fiber (Figure 2). The whole spectral system was
mounted in the front part of an all-terrain-vehicle (Trail Boss
330, Polaris Industries, Minnesota, USA), aiming to the left
and able to make spectral acquisitions controlled by a physical
trigger while the all-terrain-vehicle is in motion. The sensor head
was placed at a height of 0.95m from the ground, to cover
the mid-upper part of the grapevine’s canopy (just above the
fruiting zone) (Figure 2). The measurements were conducted
contactless (no contact with the canopy occurred), at ~30cm
distance from the canopy. The diameter of the measurement
window was 19mm. On-the-go spectral measurements were
acquired on both sides of the canopy (east and west) at
an average speed of 5km/h and rate of spectral acquisition
of 24 Hz.

FIGURE 2 | lllustration of the setup of the near infrared system operating from
the moving all-terrain vehicle for vineyard water status monitoring. (The authors
declare that written and informed consent has been obtained from the
depicted individual in this image, for the publication of this identifiable image).
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Measurement of the Stem Water Potential
(¥s)

Midday stem water potential (W) was used as the reference
method to assess the plant water status. For each field replication
three random vines within the 15 monitored (Figure 1) were
selected (one vine of the first five plants, another of the centered
five plants, and the third one of the last five plants), and one adult
leaf of the mid-upper part of the canopy per vine was tagged and
its Wy determined. Therefore, 36 leaves were measured each day,
making a total of 324 measurements of W in season 2015, and
216 in 2016.

Measurements of W were conducted at solar noon (at the
same time interval as spectral acquisition) using a Schélander
pressure bomb (Model 600, PMS Instruments Co., Albany,
USA). Prior to the determination of W, the tagged leaves were
covered with aluminum foil and allowed to dark adaptation
during 1h.

Spectral Processing

Spectral data handling and calibration models were carried out
with MATLAB (version 8.5.0, The Mathworks Inc., Natick, MA,
USA). PLS Toolbox (version 8.1, Eigenvector Research, Inc.,
Manson, WA, USA) was used for principal component analysis
(PCA) and partial least squares (PLS) regression.

Spectral processing involved several steps. The first one
consisted on the allocation of the acquired spectra to the different
groups of vines within each field replicate. Likewise, for each
date and side of the canopy (east and west), the raw spectra
corresponding to the 15 middle plants (around 360 spectra)
per field replication were equally distributed in three groups
(120 spectra per group): one corresponding to the first five
plants (first sub replicate unit), another to the following five
plants (second sub replicate unit), and the third group of spectra
referred to the last five plants (third sub replicate unit). This
allocation was made on the basis that the speed of the all-terrain
vehicle was kept constant during spectral acquisition. Within
each field replicate, for each of the three sub replicate units, the
average spectrum was computed. These average spectra were then
linked with their corresponding value of W, making up a total
dataset of 324 samples per canopy side in 2015, and a dataset of
216 samples in 2016.

Due to different kind of spectra collected during the
measurements, including gaps, wood, metal, etc., a filtering step
was needed. In order to retain only those spectra corresponding
to grapevine leaves, a spectra comparison was performed using
the “Spectra Comparison & Filtering” tool from the SL Utilities
software (version 3.1, Polytec GmbH, Waldbronn, Germany),
and providing a static, well-taken signature spectrum of a
grapevine leaf for the comparisons.

The third step involved the pre-processing of the average
spectra to remove the effects of light scattering and to compensate
for baseline offset and bias. Several combinations of spectral
pre-processing filters were tested and those yielding the best
prediction outputs were finally chosen. These filters involved
the use of standard normal variate (Barnes et al., 1989; Dhanoa
etal,, 1995) and the application of the Savitzky-Golay smoothing
and derivative procedures, selecting distinct values for the

window size and degree of the derivative. Derivatives were used
to accentuate small bands and to resolve overlapping peaks
(Savitzky and Golay, 1964).

In the fourth step, PCA was used to reduce the dimensionality
of the data, to examine any possible grouping and to identify
potential outliers by studying score plots using Q residuals and
Hotelling’s T2 statistic (Brereton, 2003). The Q statistic was
calculated as the sum of squares of the residuals (Jackson, 2003).
Equation (1) shows the Hotelling T computation procedure
(Hotelling, 1931), where: p is the number of variables (PC scores
considered); n is the number of samples; and F the critical value
for a Fisher distribution with o confidence level.

) (n—1)
Tpna == 7 Fonpa

Chemometrics and Data Analysis

Calibration, validation, and prediction models of grapevine water
status were built using PLS regression, where the processed
spectra were the inputs and the values of W the reference
indicator. PLS has proved to be an accurate, robust, and reliable
chemometric method (Wold et al., 2001) to analyse spectral data,
as it is capable to deal with a vast amount of data, especially
when the number of wavelengths largely surpasses the number
of samples. PLS water status models for W, prediction were
built using the 256 spectral datapoints (X matrix) and the W
values (Y matrix) as inputs. Individual models for each season
(2015 and 2016) and a global one involving all data from the
two seasons were developed. Models were built at two different
spatial scales: (a) considering the three W, per field replicate
individually (seasons 2015 and 2016), and (b) considering an
average spectrum and W value per field replicate (only in
2015). In the two seasons, models were built for each side of
the canopy independently (east and west) and using data from
both sides. For the latter approach, a new dataset including
spectral measurements from east and west sides datasets was
generated. Special care was taken to make this new dataset as
representative as those corresponding to a single canopy side.
For that purpose, a pseudorandom sample selection of the same
amount of data per canopy side, water regime, and measurement
day was conducted, to end up with a new dataset with a total
number of samples equal to those of the east or west sides. For the
global model of the two seasons, modeling was conducted only
for the east side.

With the aim of building robust models capable of predicting
totally unknown samples, the original dataset of spectra was
split up into two independent datasets: a calibration one
(comprising 80% of all data) and an external validation set
(comprising the remaining 20% of original data). The calibration
dataset was used to train and to perform an internal cross-
validation of the model, while the external validation set was
only utilized for prediction purposes, using the calibration
models. Two different methods of internal cross-validation were
tested: (a) 10-fold venetian blind cross validation, and (b)
leave one day out cross validation. In a n-fold venetian blind
cross validation, each fold 7 is built taking samples from the
dataset of a n-multiple position until the end of the dataset
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(samples i, i + n, i + 2n, i + 3n, ...). Once the folds
are built, a traditional n-fold cross validation is carried out,
in which # models are trained with n-1 folds, and tested
with the remaining fold, rotating the latter until all of them
have been used. The average performance of the n models
is finally computed. The second internal validation approach,
the leave one day out cross validation, is similar to the leave
one out cross validation, in which a single observation (in
this case data from one date) is used to internally validate the
training model built with the remaining observations (remaining
dates). This is repeated such that each observation (each
date) in the original dataset is used once as the validation
data. For each model, the optimal number of latent variables
was selected as that yielding the minimum root mean square

error of cross validation (CV-RMSE). To evaluate the quality
of the best models obtained, the coeflicient of determination
(R?) and the root mean square error (RMSE) of calibration
(Ré calibration RMSE), cross-validation (sz, CV-RMSE), and

prediction (R2, prediction RMSE) were calculated.

Mapping

To illustrate the capability of the developed methodology to
assess the vineyard water status variability, maps of the predicted
values of W, in the monitored vineyard plot were built using a
multilevel b-spline interpotation with QGIS 2.18 (Free Software
Foundation, Boston, MA, USA) for two dates, one of season 2015
and another one from season 2016.

TABLE 1 | Average values of air temperature (T), relative humidity (RH), and vapor pressure deficit (VPD) at the time of measurement (solar noon, between 14:00 and
156:30h, GMT+1 local time) at the vineyard site for the dates of monitoring in season 2015 and 2016.

Variable

Date of measurement

Season 2015

23rd Jul 28th Jul 6th Aug 12th Aug 19th Aug 26th Aug 7th Sep 11th Sep 18th Sep
Average air T (°C) 29.2 28.2 31.6 32.0 26.9 31.1 20.4 25.4 20.4
RH (%) 44.0 35.0 37.5 36.5 20.0 33.5 42.0 50.0 39.0
VPD (kPa) 2.24 2.46 2.97 3.02 2.85 2.99 1.36 1.59 1.43

Season 2016

7th Jul 13th Jul 20th Jul 28th Jul 11th Aug 23rd Aug - - -
Average air T (°C) 27.2 18.7 29.1 29.2 22.6 32.8 - - -
RH (%) 53.0 48.5 40.5 22.5 38.0 32.5 - - -
VPD (kPa) 1.67 1.31 2.38 3.10 1.74 3.39 - - -

Jul, July; Aug, August; Sep, September.

TABLE 2 | Descriptive statistics of the stem water potential (Ws) data measured across the dates of the whole experiment in seasons 2015 and 2016, expressed in MPa.

Irrigation treatment

Stem water potential (¥s)

Season 2015

Field replication (n = 108)

Grapevine (n = 324)

Min. Max. Mean SD Min. Max. Mean SD
TO-Full irrigation -1.02 —0.71 —0.88 0.105 —1.35 —0.55 -0.85 0.161
T1-Moderate irrigation —1.29 —-0.87 —1.17 0.141 —1.65 —0.65 —-1.16 0.235
T2-No irrigation —2.02 —1.29 —1.69 0.245 —2.25 -1.10 —1.67 0.284
Irrigation treatment Season 2016
Grapevine (n = 216)
Min. Max. Mean SD
TO-Full irrigation --- —1.45 -0.75 —1.08 0.151
T1-Moderate irrigation —-1.70 —1.00 —1.30 0.160
T2-No irrigation —1.95 -0.85 —1.36 0.254

Results are shown by vine and averaged by field replicate (an average Vs value was computed from the three individual measurements) for season 2015 and by vine for season 2016.Min,

minimum; Max, maximum;, SD, standard deviation.
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RESULTS

Environmental Data and Vineyard Water

Status

The nine dates in 2015, and six dates in 2016, at which
vineyard measurements were taken involved very different
weather conditions, in terms of air T, RH, and VPD. The average
values of air T, RH, and the computed VPD at the time interval
of vineyard monitoring (solar noon) and W measurements in
the two seasons are summarized in Table 1. In season 2015 the
average air T during vineyard monitoring hours ranged from
20.4°C in September, to 32.0°C in the first 2 weeks of August,
while the RH varied from 20.0% at mid August to 50% at mid
September. The highest evapotranspiration demand occurred in
August, with values closed to 3.0 kPa, while the lowest demand,
which was less than half the maximum recorded value, happened
during the first week of September (Table 1). In 2016, a larger
range of average air T, RH, and VPD values during vineyard

monitoring hours was recorded. Likewise, average air T ranged
from 18.7°C (mid July) to 32.8°C (late August), RH varied from
22.5 to 53.0% and VPD fluctuated from 1.31 kPa at mid July to
3.39 kPa at the third week of August.

The imposed irrigation treatments successfully generated an
ample plant water status variability within the vineyard (Table 2),
and led to significant differences (p < 0.05) in W, among them
across the different measuring dates in both seasons (Figure 3).
Considering the individual measurements of grapevine W these
ranged from —0.55 MPa (no water stress) to —2.25 MPa (severe
water stress) in 2015, and from —0.75 MPa (no water stress)
to —1.95 MPa (severe water stress) in 2016 (Van Leeuwen
et al., 2009). At field replication (only for season 2015) level, in
which the three individual W; measurements per replication were
averaged, the W ranged from —0.71 MPa (no water stress) to
—2.02 MPa (severe water stress) (Table 2).

In 2015, as the season progressed, the W of plants subjected
to irrigation (TO and T1) slightly decreased until the 12th of

-1

ws (MPa)

-1.5

_25 1 Il 1

23-Jul 28-Jul 6-Aug 12-Aug

19-Aug  26-Aug 7-Sep 11-Sep 18-Sep

s (MPa)

_2 L L

7-Jul 13-Jul 20-Jul

FIGURE 3 | Evolution of the stem water potential (Ws) for each irrigation treatment (TO: full irrigation, T1: moderate irrigation, T2: no irrigation) across the ripening
season in (A) 2015 and (B) 2016. For each date, the averaged data (n = 12) for each irrigation treatment was represented. Error bars correspond to the standard
error. Significant differences among the three irrigation treatments at *p < 0.05, **p < 0.01, or **p < 0.001 were observed at all dates. (TO is represented by white
dots and dotted line; T1 is represented by black dots and dashed line; T2 is represented by black triangles and solid line).

28-Jul 11-Aug 23-Aug
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August and remained constant or even increased from the 26th
August onwards, to drop again in the last week of measurement
(Figure 3A). The recovery of the Wy values in irrigated plants
from the end of August was caused by the lower evaporative
demand (lower VPD, Table 1) and some rains occurring at the
beginning of September (data not shown). In the case of non-
irrigated vines (T2) their water status steadily diminished (more
negative values of W) until the 7th of September, and slightly
recovered also after the September rains (Figure 3A). In 2016, a
slight decreasing trend of W was observed for all treatments until
the 28th of July (Figure 3B). From then onwards the W remained
mostly constant for T0 and became more negative for T1 and T2.
The differences in W for T1 and T2 in season 2016 (Figure 3B)
were much less marked than those from season 2015 (Figure 3A).

Spectral Measurements and Regression
Models for Grapevine Water Status

Assessment

The absorbance spectra of the grapevine canopies in the
wavelength range of study (1,100-2,100nm) (Figure 4A) and
their first-derivative signal (Figure 4B) clearly revealed two

Absorbance

0.035

0.025

Absorbance
o©
o
=
[6;]

-0.005

1600
Wavelength

1200 1400 1800 2000

FIGURE 4 | Absorbance (A) raw, and (B) first derivative spectra acquired
on-the-go (at 5 km/h) in the vineyard, on the east side of the canopy along nine
dates from July to September 2015.

absorption peaks, at ~1,450 nm, which corresponded to the first
overtone of the symmetric and asymmetric hydroxyl (OH) bond
stretching and/or combination bands, and around 1,940 nm,
which can be assigned to the combination of the OH stretching
and bending bands. Stretching, bending, and combinations are
vibrational reactions of the organic groups to the electromagnetic
excitation induced by NIR spectroscopy. Since leaves are mostly
constituted by water, the prevalence of the OH group absorbance
in their NIR spectra is well-justified (Nicolai et al., 2007).

Table 3 summarizes the best regression models of W, obtained
for each canopy side and the two sides, at the two scale levels: at
field replication scale (only for season 2015), and at a smaller, sub
replication unit scale, for both seasons (2015 and 2016). Diverse
pre-processing operations were applied for east, west and the
two-side models, but all of them involved the Savitzky-Golay
first derivative, although the size of the window (7 vs. 15) varied
among the models. Following the Residuals (Q) and Hotelling
values (T2) 9.9% of the in-field acquired spectra were considered
samples with atypical spectra and removed in 2015, and 3.7%
in 2016. Likewise, in season 2015, of the 324 sub replicate unit
spectra, 32 were discarded, while from the 108 field replicate
spectra, only four were removed. In 2016 only eight samples were
discarded. The number of latent variables to build the models
was eight in all cases in 2015, and nine in 2016 and the global
approach (2015 and 2016). In general, the models built at the
field replicate scale (season 2015) showed better performance
indicators (larger values of R? and smaller RMSE) than those
generated from the sub replicate units’ data (Table 3). In the two
seasons, the best models were obtained using the spectra acquired
from the east side, with calibration and cross validation R? values
ranging from 0.79 to 0.90, and 0.71 to 0.83 respectively, and
calibration RMSE and CV-RMSE below 0.173 and 0.203 MPa,
respectively in 2015, and 0.103 and 0.119 MPa in 2016. Similarly,
a noteworthy performance was also observed for the prediction
models (external validation), with Rf, above 0.85 and prediction
RMSE around 0.150 MPa for the two modeling scales in 2015,
and R%, equal to 0.68 and prediction RMSE of 0.132 MPa in
2016. The performance of the models derived from the east &
west dataset, comprising spectral data from the two sides of the
canopy, was also remarkable, with R? and RMSE values that lied
within those of the individual, east and west models (Table 3).

The regression plots for the best prediction models for
W, corresponding to seasons 2015 and 2016 are shown in
Figures 5, 6, respectively. In 2015, a wide data range was covered
by the samples, from —2.20 to —0.60 MPa. All samples from
the Ws models [east (Figures 5A,B), west (Figures 5C,D), and
east & west (Figures 5E,F)] exhibited a very good fit along the
correlation lines and were mostly within the 95% confidence
bands. In season 2016 (Figure 6), the range of W, (from —1.95
to —0.75 MPa) was shorter than that of 2015 but similarly to
the previous year, samples mostly lied within the 95% prediction
confidence intervals.

The global model, involving data from the two seasons (2015
and 2016), was only built for the east side, as it was the one
yielding the best performance results in the individual models
for each year. Values of R* ~ 0.70 and RMSE ~0.190 MPa were
obtained for calibration, cross validation (10-fold) and prediction
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TABLE 3 | Calibration and validation statistics of the best models obtained to predict the midday stem water potential (Ws) in grapevines under field conditions from
on-the-go NIR spectroscopy at the sub-replicate unit, and field replicate scales.

Modeling variables and scale Calibration? Cross validation? Prediction®

10-fold LoboP

Season Canopy side Spectral treatment RMSE R2 CV-RMSE RZ, CV-RMSE RZ, RMSE R'z,

Sub Replicate Unit

East SNV+D1W15 0.156 0.86 0.171 0.83 0.192 0.77 0.151 0.86
West SNV+D1W15 0.195 0.78 0.214 0.73 0.251 0.71 0.188 0.78
East & West SNV+D1W7 0.168 0.83 0.190 0.79 0.253 0.72 0.173 0.81

Field Replicate

2015 East D1W15 0.173 0.90 0.171 0.82 0.203 0.79 0.150 0.85
West SNV+D1W15 0.160 0.85 0.207 0.74 0.222 0.82 0.194 0.74
East & West D1wW7 0.132 0.89 0.189 0.79 0.230 0.81 0.167 0.84

Sub Replicate Unit

2016 East SNV+D1W15 0.103 0.79 0.119 0.71 - - 0.132 0.68
West D1wW7 0.111 0.77 0.131 0.68 - - 0.131 0.54
East & West D1wW7 0.106 0.78 0.128 0.68 - - 0.133 0.62

Sub Replicate Unit
2015 & 2016 East SNV+D1W15 0.178 0.74 0.187 0.71 0.227 0.59 0.191 0.69

aNumber of samples (n) used for the development of calibration and cross validation (10-fold) models. Season 2015: 234 for East and East & West, and 238 for West models at the
sub replicate unit scale. At the field replicate level, 84 data were used for East and 86 for West, and East & West models. Season 2016: 165 samples for East, West and East &West
models. Seasons 2015 & 2016: 384 samples.

bNumber of samples (n) used for the development of cross validation models using the LODO approach. Season 2015; 318 for East and East and East & West, and 324 for West
models at the sub replicate unit scale. At the field replicate level, 102 data were used for East and 104 for West, and East & West models. Seasons 2015 & 2016: 496 samples.
SNumber of samples (n) used for prediction or external validation. Season 2015: 54 for all canopy side models at the sub replicate unit scale, and 18 at the field replicate level. Season
2016: 43 samples for East, West and East &West models. Seasons 2015 & 2016: 97 samples.

SNV, standard normal variate; DnWm, Savitzky-Golay filter with n-degree derivative, window size of m; RMSE, root mean square error (MPa); Rg, determination coefficient of calibration;
CV-RMSE, root mean square error of cross-validation (MPa); Rgv, determination coefficient of cross-validation; Fs’g, determination coefficient of prediction; 10-fold, 10-fold venetian blind
cross validation; LODO, leave one day out cross validation.

using the 15 measuring dates of the two seasons altogether  presented results evidence the capability of on-the-go proximal
(Table 3). For the best prediction global model (Figure7), NIR spectroscopy to successfully determine the grapevine water
samples fitted along the correlation line and mostly lied within ~ status in a commercial vineyard, using robust and reliable
the 95% confidence intervals. prediction models for the quantification of midday stem

The two cross validation methods tested yielded similar  water potential (W), which is a widely-used plant water status
results, although improved performance in terms of CV-RMSE  indicator (Choné et al., 2001). The outcomes obtained from a
(lower values) were obtained for the 10-fold venetian blind  comprehensive internal (cross validation) and external validation

approach (Table 3). (prediction) of the method over several dates, from pre-veraison
. . to harvest over two seasons, with substantial differences in the
Mapping of the Vineyard Water Status environmental conditions of air temperature, relative humidity,

The spatial variability of the vineyard water status at two given  and vapor pressure deficit, confirm the robustness and soundness
dates of season 2015 (Figure 8A) and 2016 (Figure 8B) was  of the developed on-the-go NIR spectroscopy method for plant
computed and presented as maps from the predicted values of  water status assessment.

W, obtained using the external prediction models from the NIR The physical principle underlying the interaction between the
spectra acquired on-the-go. The most stressed vines (with more  electromagnetic radiation at the NIR wavelength used in the
negative W values) were found on the west side of the plot and present work (1,100-2,100 nm) and the grapevine canopy leaves,
toward the north east, while the plants in the east and north west  calls for a predominant absorbance by the OH group of water,

parts of the plot exhibited little to no water stress. which constitutes between 80 and 90% of living cells (Williams,
2000). Likewise, the spectral response by the water molecules
DISCUSSION of plant leaves to NIR radiation in the range between 1000 and

2500 nm has motivated previous studies in which plant water
A novel, non-destructive methodology based on NIR  status was successfully assessed from NIR spectroscopy acquired
spectroscopy acquired on-the-go, to assess the vineyard water =~ manually with portable devices in several crops (Santos and Kaye,
status has been developed and validated over two seasons. The ~ 2009; De Bei et al., 2011; Vila et al., 2011; Poblete-Echeverria
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FIGURE 5 | Regression plots of Wy estimation using the best PLS models developed from data of season 2015 at the sub replication unit scale (A,C,E) for (A) east
(Rg = 0.86; Prediction RMSE = 0.15 MPa), (C) west (Rf, = 0.78; Prediction RMSE = 0.19 MPa), and (E) east & west (Rf7 = 0.81; Prediction RMSE = 0.17 MPa)
sides of the canopy. At the field replication scale (B,D,F) for (B) east (Rg = 0.90; Pred