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A scalable second-order analytical orbit propagator programme based on modern and classical perturbation methods is being
developed. As a first step in the validation and verification of part of our orbit propagator programme, we only consider the
perturbation produced by zonal harmonic coefficients in the Earth’s gravity potential, so that it is possible to analyze the behaviour
of the mathematical expressions involved in Delaunay normalization and the Krylov-Bogoliubov-Mitropolsky method in depth
and determine their limits.

1. Introduction

The collision between the Iridium and Cosmos satellites in
2009 has demonstrated, among other things, the necessity
of improving orbit prediction methods. With this purpose
in mind, a scalable second-order analytical orbit propagator
programme (AOPP) is being developed. This AOPP com-
binesmodern perturbationmethods based on Lie transforms
and classical averaging techniques, depending on the orbit
types or the requirements needed for a space mission, such as
catalogue maintenance operations or long-period evolution,
for example.

Most of the analytical theories in the artificial satellite
problem start by removing the short-period terms [1–4]. In
fact, the most frequently used AOPPs, SGP4 (simplified gen-
eral perturbations 4) [5, 6] and PPT2 (position and partials as
functions of time 2) [7, 8], are developed from the Brouwer-
Lyddane theory. However, other analytical theories, like AOP
[9], simplify the problem by means of a Lie transform known
as the elimination of the parallax [10]. In this work, we
analyze other alternatives to the Brouwer approach, which
may arise from the elimination of the parallax. These are
based on removing the long-period terms by means of the
elimination of the perigee [11].The transformedHamiltonian
has one degree of freedom and only depends on the radial

distance 𝑟 and 𝑅 = ̇𝑟. Classically, this Hamiltonian is known
as the radial intermediary [10]. Finally, the elimination of
the short-period terms can be made using the classical
Delaunay normalization (DN) [12] or bymeans of theKrylov-
Bogoliubov-Mitropolsky method (KBM) [13, 14].

As a first step in the validation and verification of part of
our AOPP, which we will call PPKBM

DN , we only consider the
perturbation produced by zonal harmonic coefficients in the
Earth’s gravity potential, such that it is possible to analyze
the accuracy of the mathematical expressions involved in
the corresponding analytical theories in depth, and thus
determine its limits when classical problems, like critical
inclination or small eccentricities and inclinations, appear.

The purpose of this study is to perform a comprehensive
evaluation from the point of view of accuracy and the
operative utility of the Delaunay normalization and Krylov-
Bogoliubov-Mitropolskymethod once the long-period terms
have been removed. A methodology based on an exploratory
data analysis (EDA) [15] is proposed in order to validate both
integration methods and determine the values of the initial
conditions where these methods are valid, in function of the
duration of propagation. A space catalogue with 14208 two-
line elements (TLE) is used as simulated data in order to
validate our AOPP. After that, we identify the outliers and
make a general study of the rest of the TLEs considering the
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Figure 1: Two methods for integrating the radial intermediaryH󸀠󸀠.
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2. Analytical Theories

In polar-nodal variables (𝑟, 𝜃, ], 𝑅, Θ,𝑁), the Hamiltonian
for an Earth satellite perturbed by zonal harmonic potential
terms is given by

H =

1

2

(𝑅
2
+

Θ
2

𝑟
2
) −

𝜇

𝑟

+

𝜇

𝑟

𝑚

∑

𝑛≥2

𝐽
𝑛
(

𝛼

𝑟

)

𝑛

𝑃
𝑛
(𝑠 sin 𝜃) . (1)

This Hamiltonian defines a two-degree-of-freedom dynami-
cal system. The 𝑟 coordinate is the radial distance from the
Earth’s center of mass to the satellite, 𝜃 = 𝑓 + 𝑔 represents
the argument of latitude (𝑓 is the true anomaly and 𝑔 is
the argument of the perigee), and ] is the argument of the
node, which is ignored inH. The 𝑅momentum is the radial
velocity of the orbiter, whereas Θ is the module and 𝑁 is
the third component of its angular momentum.The variables
𝑅, Θ, and 𝑁 are the momenta for 𝑟, 𝜃, and ], respectively.
𝑃
𝑛
is the Legendre polynomial of degree 𝑛, 𝑠 is the sine of

the inclination of the orbit, 𝑚 is the maximum order of
the zonal harmonic perturbation being considered, 𝜇 is the
gravitational constant, 𝛼 is the equatorial radius of the planet,
and 𝐽
𝑛
are the zonal harmonic coefficients.More details about

theHamiltonian formulation of the artificial satellite problem
can be found in [10, 17].

Figure 1 shows the combinations of Lie transforms and
classical averaging techniques used in developing the two
analytical theories, Delaunay normalization and Krylov-
Bogoliubov-Mitropolsky method. Both theories begin by
removing the long-period terms caused by the argument of
the perigee through the combination of two Lie transforms,
the elimination of the parallax, and the elimination of the
perigee (Lie transforms 𝜑

1
and 𝜑

2
, resp.) from Hamiltonian

(1). The transformed Hamiltonian H󸀠󸀠 has one degree of
freedom but maintains the short-period terms caused by the
mean anomaly. These two Lie transforms are carried out in a

closed form of eccentricity and inclination, which leads us to
an integrable problem in the variables (𝑟󸀠󸀠, 𝑅󸀠󸀠).

The second order of the Hamiltonian, after the elimina-
tion of the perigee, takes the following form:
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where the small parameter 𝜖 represents 𝐽
2
, 𝑝󸀠󸀠 = Θ

󸀠󸀠2
/𝜇,

P
𝐽2𝑖
are polynomials in eccentricity, and their coefficients are

polynomials in 𝑠󸀠󸀠.
Traditionally, to complete the theory and obtain themean

elements, as Brouwer [2] did, a further reduction is made
through Delaunay variables (𝑙, 𝑔, ℎ, 𝐿, 𝐺,𝐻) by means of
the Delaunay normalization [12] (Lie transform 𝜑

4
), which

averages the problem over the mean anomaly. However, if
the time and variable 𝑟󸀠󸀠 are replaced by the perturbed true
anomaly and 𝑢, which is defined as the inverse of 𝑟󸀠󸀠, in the
Hamiltonian H󸀠󸀠 (𝜑

3
transform), the equations of motion

become a one-dimensional perturbed harmonic oscilla-
tor in which the Krylov-Bogoliubov-Mitropolsky method
[13, 14, 18] can also be used to integrate the equations
of motion [19–24]. It is worth noting that Delaunay’s
variables are singular for zero eccentricity and/or zero
inclination.

In this study, the analytical theories are carried out
maintaining the physical parameters in symbolic form, such
that they can be valid for any gravity field model. On the
other hand, no change of variables is introduced in these
theories so as not to remove any problems generated by
small eccentricities and inclinations [25], including critical
inclination, which allows us to evaluate their real impact on
the analytical expressions and so determine the region of the
space where these problemsmay appear. However, in the case
of critical inclination, the solution implemented in PPT2 is
analyzed.

Our AOPP combines these two theories. The analytical
expressions and the orbit propagator, coded in C program-
ming language, are performed by the symbolic-numeric
environmentMathATESAT [23].

3. Methodology

In order to evaluate the sensitivity of the two analytical
integration techniques in the zonal case for certain initial
conditions, we use the following basic methodology. Each
one of the two integration methods is used to propagate
a TLE space catalogue over a time span of 30 days. Both
propagations are compared with the integration of the origi-
nal problem using a highly accurate 8th order Runge-Kutta
method [26]. Then, the distance, along-track, cross-track,
and radial errors are calculated. Finally, an exploratory data
analysis consisting of the study of these errors is made. The
details of this methodology are given below.
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3.1. Study Data. Data from a space catalogue with 14208

TLEs are considered so as to provide a comprehensive
knowledge of the DN and KBM performances. Although it
is well known that TLEs have been designed to be used in
combination with the SGP4 orbit propagator, we consider
that a TLE space catalogue contains a large and representative
number of different types of orbits, which can be considered
as a reliable and independent test for our study.

The orbit data can be separated from the space catalogue.
Attending to the frequency distributions of Ω, 𝜔, and𝑀, we
can conclude that, in general, they are distributed uniformly
between 0∘ and 360∘, whereas the distributions of 𝑎, 𝑒, and 𝑖
are not uniform.The values of the semimajor axis are between
1.018543 and 109.2196 Earth Radii, despite the fact that 50%
of the objects have 𝑎 < 1.5 Earth Radii. The eccentricity
is between 0.000001 and 0.9203, although almost 60% have
𝑒 < 0.01. The inclination is between 0.00120∘ and 144.6415∘,
including 270 objects near critical inclination. Near-circular
low-Earth, medium-Earth, eccentric, and low-Earth orbits
represent 95.6%of the orbit types belonging to the considered
catalogue.

3.2. Exploratory Data Analysis (EDA). The 14208 TLEs are
propagated over a time span of 30 days using the DN, KBM,
and Runge-Kutta methods. Then, the distance, along-track,
cross-track, and radial errors are calculated and analyzed over
two time spans of 7 and 30 days. After that, we carry out an
EDA consisting of the following.

(i) A graphic study of DN and KBM errors uses the box
and whisker plot. This plot of a data set consists of
a box drawn around the median value, where the
lower and upper box edges bound the first and third
quartiles (Q1 and Q3), respectively. The lower and
upper whiskers extending from each bound box are
the minimum and maximum values without outliers
(circles) and extreme values (asterisks), respectively,
whereas𝑄

3
+1.5∗ (𝑄

3
−𝑄
1
) and𝑄

1
−1.5∗ (𝑄

3
−𝑄
1
)

represent the upper and lower limits, respectively. We
must remark that in this study the extreme values are
also considered as outliers.

(ii) Scatter plots aim to characterize the orbits in which
the propagators have a poorer overall performance
(greater presence of outliers—as above 𝑄

3
+ 1.5 ∗

(𝑄
3
−𝑄
1
)). A study of contingency tables (considering

the number of outliers and corresponding orbits as
variables) and the calculation of Yule’s Q, a measure
of themagnitude of association between the two rates,
complete the study chart.

(iii) Excluding the atypical values, the behaviour of the
two propagators and the distance, along-track, cross-
track, and radial errors are explored. In particular,
TLEs whose distance errors are above 1000m are
considered atypical values for a time span of 30 days.

(iv) Finally, we explore the results of the proposed
improvements in the two estimates for the orbits near
critical inclination.

Table 1: Statistical parameters for DN and KBM distance errors (m)
for atime span of 7 days.

DN KBM
Median 0.202258 0.063508

Minimum 0.000002 0.000001

Maximum 83620353 83620353

𝑄
1

0.061806 0.042548

𝑄
3

1.595556 0.074012

𝑄
3
+ 1.5 ∗ (𝑄
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) 3.896181 0.1212079
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Figure 2: Box and whisker plots showing DN and KBM distance
error values for a time span of 7 days.

It is worth noting that exploratory data analysis does
not require the incorporation of any prior knowledge of this
process.

4. DN versus KBM for 𝐽
2
–𝐽
4

Model

In this section, the force model taken into account in the
analytical orbit propagator only contains the zonal harmonic
coefficients 𝐽

2
–𝐽
4
, as in SGP4.

4.1. Time Span of 7 Days. The study begins by performing a
box and whisker plot analysis in order to identify potential
outliers for DN and KBM distance error values.The results of
this analysis are shown in Figure 2. As can be seen, there are
no outliers below the lower-whisker limit, but if there were,
they would represent very good behaviour for the analytical
methods in the corresponding TLE. Outliers larger than 5m
have not been included in this graph. The values of the
median, minimum, maximum, first and third quartiles, and
the upper-whisker limit are shown in Table 1 including the
data which generate overflows.

The number of outliers detected in the DN and KBM
cases is 2662 and 147, respectively, of which only 55 are
common. DN outliers represent 33% of the TLEs in which
the eccentricity is below 0.01. Thus, this strong association
is confirmed by a highly significant Yule’s Q value of 0.97.
When the distance error is obtained from TLEs with 𝑒 ≥

0.01 and near critical inclination (between 62.5
∘ and 64.5

∘),
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(c) KBM outliers

Figure 3: Distribution of eccentricity versus inclination for a time span of 7 days.
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Figure 5: Krylov-Bogoliubov-Mitropolsky method for a time span of 7 days.
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Figure 7: KBM outliers (𝑒 > 0.5 and 𝑖 < 1.5
∘) for a time span of 7 days.
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Figure 8: Box and whisker plots showing DN and KBM distance
error values for a time span of 30 days.

DN outliers represent 47% of the corresponding TLEs. In
this case, Yule’s Q of 0.997 also indicates a very strong
association. For KBM, outliers also represent 50% of TLEs
near critical inclination (between 62.5

∘ and 64.5
∘), with a

Yule’s Q of 0.998, whilst 12 of the remaining 16 outliers
correspond to TLEs with inclinations of below 1.5

∘ and
𝑒 > 0.5, in which Yule’s Q is 0.985. It is worth noting that
the maximum distance error in these cases is below 6m.
The distributions of the eccentricity versus inclination of
the full TLE catalogue and of the TLEs which correspond
to DN and KBM distance error outliers are depicted in
Figure 3.

Next, the behaviour of the DN and KBM methods,
starting from distance, along-track, cross-track, and radial
errors, is analyzed.

The histogram of DN distance error is shown in
Figure 4(a). It should be noted that the lack of robustness
of estimates is due to the asymmetry on the right of
the histogram. This asymmetry corresponds to TLEs with
small eccentricity, 𝑒 < 0.01, and near critical inclination.

Figure 4(b) shows a box and whisker plot of the distance,
along-track, cross-track, and radial errors without upper
outliers. These data are classified into three sets: 𝑒 < 0.01,
𝑒 ≥ 0.01, and 62.5∘ < 𝑖 < 64.5

∘, and any other data. The most
influential errors for TLEs with 𝑒 < 0.01 are found in the
along-track and radial components, whereas for TLEs with
𝑒 ≥ 0.01 and 62.5∘ < 𝑖 < 64.5

∘ the worst error behaviour is
found to be in the cross-track component.

Figure 5(a) depicts the histogram of KBM distance error,
which exhibits a fairly symmetric behaviour. It is necessary to
bear in mind the robustness of estimates. Figure 5(b) shows
a box and whisker plot of the distance, along-track, cross-
track, and radial errors without upper outliers.These data are
classified as mentioned in the DN case. However, in this case,
the most influential errors for TLEs with 𝑒 < 0.01 are found
in the along-track and cross-track components, whereas for
TLEs with 𝑒 ≥ 0.01 and 62.5

∘
< 𝑖 < 64.5

∘ the worst error
behaviour is found to be in the cross-track component, as in
the DN case. Note the scarce influence of radial error in the
three cases.

In general, the worst behaviour is found in the 𝑒 < 0.01

category of the Delaunay normalization. Figure 6 shows box
and whisker plot analysis, without outliers, for semimajor
axis, eccentricity, inclination, and argument of the perigee
errors for both DN and KBM methods in this category. The
graphics, on the one hand, of the argument of the perigee
and mean anomaly errors and, on the other hand, of the
inclination and argument of the node errors are similar for
DN and KBMmethods. It is worth noting that the semimajor
axis error is only slightly better in DN than in KBM cases,
that is, 0.0035mversus 0.0045m inmean values, respectively.
Eccentricity, argument of the perigee, and mean anomaly
errors are much better in KBM than in DN cases. The
worst eccentricity and mean anomaly determinations using
the Delaunay normalization method, in this case, explain
the influence of the radial error over the cross-track error
(Figures 6(b) and 6(d)) .

Finally, in this section some of the KBM outliers are
analyzed, in particular, those corresponding to TLEs with
𝑒 > 0.5 and 𝑖 < 1.5

∘. Both DN and KBM methods exhibit
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Figure 9: Distribution of eccentricity versus inclination for a time span of 30 days.

0 100 200 300 400 500 600 700 800 900 1000
DN error (m)

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f o
bj

ec
ts

(a) DN distance error histogram

0

200

400

600

800

1000

Er
ro

r (
m

)

DN distance error
DN along-track error

DN cross-track error
DN radial error

e < 0.01 e ≥ 0.01 and 62.5 < i < 64.5 Others

(b) Distance, along-track, cross-track, and radial errors
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similar behaviour, butwhen this set of outlier values is studied
KBM is slightly better than DN, 0.12m versus 0.14m in mean
values, respectively, as can be seen in Figure 7.

4.2. Time Span of 30 Days. The box and whisker plot analysis
is used in order to identify potential outliers for DN and
KBM distance error values. Results of this analysis are shown
in Figure 8. Outliers larger than 3000m are not included in
this graph. As can be seen, there are no outliers below the

Table 2: Statistical parameters for DN andKBMdistance errors (m)
for a time span of 30 days.

DN KBM
Median 48.8534 64.6695

Minimum 0.00015 0.00012

Maximum 8833877 8833877

𝑄
1

25.8261 30.6395

𝑄
3

78.6987 78.4751

𝑄
3
+ 1.5 ∗ (𝑄

3
− 𝑄
1
) 158.0076 150.2285

lower-whisker limit. The values of the median, minimum,
maximum, first and third quartiles, and the upper-whisker
limit are shown in Table 2, including the data which generate
overflows.

The number of outlier values detected in the DN and
KBM cases is 1850 and 446, respectively, 409 of which are
common. DN outliers represent 18% of the TLEs with 𝑒 <

0.01 and near critical inclination. Thus this association is
confirmed by a Yule’s Q value of 0.54. When the distance
error is obtained from TLEs with 𝑒 ≥ 0.01 and near critical
inclination, the outliers represent 34% of the corresponding
TLEs, inwhich case Yule’sQ of 0.78 also indicates a significant
association. For KBM, outliers also represent 50% of TLEs
near critical inclination with a significant Yule’s Q of 0.89.
The distributions of the eccentricity versus inclination of the
full TLE catalogue and of the TLEs which correspond to DN
and KBM outliers with distance error values above 1000m
are depicted in Figure 9.The number of outliers for a distance
error above 1000mdetected in the DN and KBM cases is 261
and 27, respectively, 27 of which are common.

Next, the behaviour of the DN and KBM methods,
starting from distance, along-track, cross-track, and radial
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Figure 13: Comparison between DN2 and KBM2 distance errors near critical inclination for a time span of 7 days.
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Figure 14: DN2 and KBM2 distance, along-track, cross-track, and
radial errors near critical inclination for a time span of 7 days.

errors, is analyzed for TLEs with distance errors below
1000m.

The histogram of DN distance error is shown in
Figure 10(a). Figure 10(b) shows a box and whisker plot of
the distance, along-track, cross-track, and radial errors.These
data are classified as mentioned in the previous section. The
most influential error for TLEs is found in the along-track
component in all categories. The cross-track component is
greater than the radial component for TLEs with 𝑒 ≥ 0.01

and 62.5∘ < 𝑖 < 64.5
∘, whereas in the other two categories the

radial component is greater than the cross-track component.
Figure 11(a) depicts the histogram of KBM distance error.

Figure 11(b) shows a box and whisker plot of the distance,

along-track, cross-track, and radial errors. The behaviour of
the three error components is the same as in the DN case.

The worst behaviour of the two methods is found for
eccentricities below 0.01, although the behaviour is more
robust in the case of DN than in KBM, as the asymmetries
on the right of the histograms in Figures 10(a) and 11(a)
show. Then a detailed study is presented to determine the
range of influence of the eccentricity over the distance error.
Catalogue data are classified into five sets: 𝑒 < 0.0015,
0.0015 ≤ 𝑒 < 0.003, 0.003 ≤ 𝑒 < 0.006, 0.006 ≤ 𝑒 <

0.01, and 𝑒 ≥ 0.01, which represent 16.26%, 11.97%, 15.05%,
12.84%, and 43.88% of the catalogue, respectively. Figure 12
shows a box and whisker plot analysis of the DN and KBM
distance error. As can be seen, DN is worse than KBM for
𝑒 < 0.003, in particular, 460m versus 49m in mean values,
respectively, for 𝑒 < 0.0015, and 189m versus 57m in mean
values, respectively, for 0.0015 ≤ 𝑒 < 0.003.

5. Outliers Near Critical Inclination

The number of TLEs with 62.5
∘
< 𝑖 < 64.5

∘ in the space
catalogue considered in this study is 270, 58 of which have
eccentricities below 0.01, and thus they are not taken into
account with the Delaunay normalization method. Techni-
cally, the critical inclination singularity is directly related to
the denominator 1 − 5cos2𝑖󸀠󸀠, which appears in the direct
and inverse transformations of the elimination of the perigee.
We must point out that this Lie transform is not valid in the
neighborhood of 𝑖 = 63.45

∘ and 𝑖 = 116.56
∘.

In order to reduce the impact of the singularity over this
transform, we replace the terms 1/𝑥 with

𝑇2 =

1 − 𝑒
𝛽𝑥
2

𝑥

= 𝛽𝑥

12

∑

𝑛=0

(−1)
𝑛
𝛽
𝑛
𝑥
2𝑛

(𝑛 + 1)!

10

∏

𝑚=0

(1 + 𝑒
−2
𝑚
𝛽𝑥
2

) , (3)

where 𝑥 = 1 − 5cos2𝑖󸀠󸀠 and 𝛽 = 100/2
11. This solution

is implemented in other analytical orbit propagator pro-
grammes (PPT2, HANDE, and AOP). DN2 and KBM2 will
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Figure 15: Box and whisker plot of the KBMJ12 and KBMJ12 2 distance errors near critical inclination for a time span of 7 days.

Table 3: Statistical parameters for DN andKBMdistance errors (m)
near critical inclination for a time span of 7 days.

DN KBM
Median 0.174277 0.173565

Minimum 0.000313 0.000313

Maximum 83620353 83620353

𝑄
1

0.083627 0.082587

𝑄
3

2.089765 2.089800

𝑄
3
+ 1.5 ∗ (𝑄

3
− 𝑄
1
) 5.098972 5.100619

refer to the errors obtained with the modified analytical orbit
propagator programme. It is worth noting that this modified
propagator does not integrate Hamiltonian (1) exactly but is
an approximation, which must be identified and its phase
space needs to be characterized. The preliminary numerical
analysis is here presented over a time span of 7 days. The
first subsection studies the behaviour of DN2 andKBM2 near
critical inclination in the case of 𝐽

2
–𝐽
4
perturbations, while in

the second subsection the Krylov-Bogoliubov-Mitropolsky
behaviour is analyzed only for 𝐽

2
–𝐽
12
perturbations.

5.1. 𝐽
2
–𝐽
4
Perturbations. Data considered in this study cor-

respond to TLEs with 𝑒 ≥ 0.01 and 62.5
∘
< 𝑖 < 64.5

∘.
Several of these TLEs have distance errors above 107m, and
overflow values are obtained in two cases. Table 3 shows
through statistical parameters that the behaviour of DN and
KBM distance errors is similar in the considered TLEs.

Table 4 shows the values of the median, minimum,
maximum, first and third quartiles, and the upper-whisker
limit in the cases of DN2 and KBM2 distance errors for all
TLEs with 𝑒 ≥ 0.01 and 62.5

∘
< 𝑖 < 64.5

∘, including the
two data which generate overflows. Figure 13 shows that the
behaviour in both cases is very similar. The maximum error
is 133m.

Table 4: Statistical parameters for DN2 and KBM2 distance errors
(m) near critical inclination for a time span of 7 days.

DN2 KBM2
Median 4.735359 4.735458

Minimum 0.0000134 0.0000159

Maximum 133.4178 133.4178

𝑄
1

0.818214 0.816421

𝑄
3

18.63646 18.63655

𝑄
3
+ 1.5 ∗ (𝑄

3
− 𝑄
1
) 45.363828 45.366743

Tables 5 and 6 show that robustness is not obtained
from a general improvement on estimates but from a proper
calculation of original outliers. In fact, in 75% of the cases,
the behaviour of both estimators is worse, but original outlier
estimates have improved. 165 estimates obtained by the
modified models in the nonoutlier cases are worse, between
0.37m and 13.28m in mean values, while the remaining 47
outliers and the two overflows have reduced to 8.2m inmean
value.

Figure 14 shows the box and whisker plot of DN2 and
KBM2 distance errors; in this case the cross-track error is also
the most influential as was seen in the previous general study
for TLEs with 𝑒 ≥ 0.01 and 62.5∘ < 𝑖 < 64.5

∘.

5.2. 𝐽
2
–𝐽
12

Perturbations. As can be seen in the previous
subsection, the behaviour of the two integration methods
is similar for the near critical inclination case. Therefore,
we will only consider the Krylov-Bogoliubov-Mitropolsky
method to conduct the study when perturbations caused by
zonal harmonic coefficients from 𝐽

2
to 𝐽
12

are taken into
consideration. We will refer to this model as KBMJ12, and
KBMJ12 2 will be the modified analytical orbit propagator
programme when (3) is taken into account.

The same previously studied 270 TLEs are considered
here. Several of these TLEs have distance errors above 108m,
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Table 5: Statistical parameters for DN, DN2, KBM, and KBM2 distance errors (m) near critical inclination for a time span of 7 days in the
nonoutlier cases.

DN DN2 KBM KBM2
Mean 0.3742 13.275 0.3734 13.271

Median 0.1139 6.0134 0.1118 6.0146

Minimum 0.000313 0.000134 0.000313 0.000159

Maximum 3.6050 133.4178 83620353 80.1422

Table 6: Statistical parameters for DN, DN2, KBM, and KBM2 distance errors (m) near critical inclination for a time span of 7 days with
outliers.

DN DN2 KBM KBM2
Mean 4547873 8.2295 4547873 8.2285

Median 119.45 3.0804 119.45 3.0803

Minimum 5.1048 0.00131 5.1049 0.00135

Maximum 83620353 133.4178 83620353 80.1422
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Figure 16: KBMJ12 2 distance, along-track, cross-track, and radial
errors near critical inclination for a time span of 7 days.

and overflow values are obtained in ten cases. The values of
the median, minimum, maximum, first and third quartiles,
and the upper-whisker limit in the case of KBMJ12 distance
error are 859.8631, 0.009345, 133147992, 9.32829, 8070.470,
and 20162.18, respectively. Figure 15(a) shows a box and
whisker plot of the KBMJ12 distance error in which only 5
out of 56 outliers were included.

The values of the median, minimum, maximum, first and
third quartiles, and the upper-whisker limit in the case of
KBMJ12 2 distance error for all TLEs, including the ten data
which generate overflows, are 634.4462, 0.249139, 2247.630,
310.6079, 1127.350, and 2352.4631, respectively. Figure 15(b)
shows a box and whisker plot for KBMJ12 2 distance error
and as can be observed there are no outlier values.

Although the ephemeris generated by the second-order
theory in the 𝐽

2
–𝐽
4
case provides good accuracy, this becomes

worse when the number of zonal harmonics increases. The
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Figure 17: Box and whisker plot of the KBMJ12 distance error near
critical inclination for a time span of 7 days.

same accuracy is only achieved if third-order effects are
included. The estimation in 142 cases, including the ten
overflow values, is better in KBMJ12 2, being 967m in mean
value, although it is worse in 128 cases, with mean values
of 184m and 503m, as can be seen in Table 7. Another
differencewith respect to 𝐽

2
–𝐽
4
is that in 𝐽

2
–𝐽
12
themain error

is obtained in the along-track component, as can be seen in
Figure 16.

Finally, a detailed study is presented to determine the
range of influence of critical inclination. As might be
expected, the behaviour of the analytical theory becomes
worse in the neighborhood of near inclinations. This study
is restricted to the interval [62.5∘, 64.5∘], which has been
divided into five subintervals. Figure 17 shows the distribu-
tion of theKBMJ12 distance error in the five subintervals.This
distribution is similar in the case of 𝐽

2
–𝐽
4
perturbations. As

can be observed, the errors produced by the analytical theory
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Table 7: Statistical parameters for KBMJ12 and KBMJ12 2 distance errors (m) near critical inclination, for a time span of 7 days, classified
according to the model with the best performance.

Model Number of data Mean Median Minimum Maximum
KBMJ12

128

184.3634 6.6210 0.009345 1720.197

KBMJ12 2 503.3113 311.52 0.249139 1796.142

KBMJ12
142

5671673 7939.072 166.2859 133147992

KBMJ12 2 967 763.488 2.44315 2248

Table 8: Statistical parameters for KBMJ12 and KBMJ12 2 distance errors (m) near critical inclination.

𝑖 Model Number of data Median Minimum Maximum

62.5
∘
≤ 𝑖 < 63

∘ KBMJ12
64

1651 0.027 35992

KBMJ12 2 1474 1.93 2231

63
∘
≤ 𝑖 < 63.33

∘ KBMJ12
31

56799 0.015 2.8 × 10
6

KBMJ12 2 836 0.85 2247

63.33
∘
≤ 𝑖 < 63.66

∘ KBMJ12
49

0.8 × 10
8

0.014 1.3 × 10
8

KBMJ12 2 600 0.25 1200

63.66
∘
≤ 𝑖 < 64

∘ KBMJ12
71

400 0.015 4.3 × 10
5

KBMJ12 2 446 0.5 1882

64
∘
≤ 𝑖 ≤ 64.5

∘ KBMJ12
55

20.38 0.009 9495

KBMJ12 2 438 2.13 1593

are greater in the interval [63.33∘, 63.66∘), whereas in the rest
of the intervals other large errors can be found.

Figure 18(a) compares the KBMJ12 versus KBMJ12 2 dis-
tance errors, whilst Figure 18(b) shows the box and whisker
plot analysis for KBMJ12 2 distance errors in each subin-
terval. It can be seen that the modified analytical method
KBMJ12 2 clearly improves the behaviour in the critical incli-
nation subinterval. The same conclusion can be drawn from
the comparison between KBMJ12 and KBMJ12 2 distance
error statistical parameters shown in Table 8.

6. Conclusion and Future Work

A scalable closed-form analytical orbit propagator pro-
gramme is being developed. In this paper, only zonal har-
monic perturbation is considered. This perturbation can be
handled bymeans of two analytical theories. Both are derived
after removing the long-period perturbation terms due to
the argument of the perigee. The first removes the short-
period terms due to the mean anomaly, using the classical
Delaunay normalization (DN), and then the transformed
Hamiltonian is integrated by quadratures. It should be noted
that Delaunay variables are used here. The second removes
the short-period terms by means of the Krylov-Bogoliubov-
Mitropolsky method (KBM). This process is formulated in
polar-nodal variables. In order to validate both models a TLE
space catalogue is used. Although this input is only valid for
SGP4, it can be considered a reliable set of initial conditions
for validating our propagator. These data are classified into
three sets: 𝑒 < 0.01, 𝑒 ≥ 0.01 with 62.5

∘
< 𝑖 < 64.5

∘,
and any other data. Then, an exploratory data analysis is

applied to analyze the errors produced by the propagation
of the TLE catalogue through both analytical theories with
respect to the numerical integration of the original problem.
The considered perturbations are the 𝐽

2
–𝐽
4
and 𝐽
2
–𝐽
12
effects

for two time spans of 7 and 30 days.
When the TLEs are propagated over 7 days, the number

of outliers is 2662 and 147 in the DN and KBM cases, respec-
tively, 55 of which are common. DN outliers concentrate in
two groups: low eccentricities, 𝑒 < 0.01, and near critical
inclinations, 𝑒 ≥ 0.01 with 62.5∘ < 𝑖 < 64.5

∘. Similarly, KBM
outliers are also concentrated in two groups: near critical
inclinations, and low inclinations, 𝑖 < 1.5

∘, with medium-
high eccentricities, 𝑒 > 0.5, which is a group of outliers
with an error below 8m. The critical inclination is handled
using the approximation implemented in PPT2, HANDE,
andAOP in the 𝐽

2
–𝐽
4
and 𝐽
2
–𝐽
12
cases. Preliminary numerical

analysis seems to be very promising in the inclination interval
(62.5
∘
, 64.5
∘
). In general, our conclusion is that KBM is clearly

more robust than DN in 87% of the study cases over 7 days,
andwheneverDN is better thanKBM, it is only slightly better.
The behaviour of the polar-nodal variables is excellent in
all cases and does not present any problem, not even when
𝑒 < 0.01.

On the other hand, when TLEs are propagated over 30
days, the behaviour of the two methods is pretty good. The
number of outliers detected in the DN and KBM cases for
a distance error above 1000m is 261 and 27, respectively, 27
of which are common. DN is worse than KBM only when
𝑒 < 0.003; however, for the rest of the cases DN shows better
behaviour than KBM, in contrast to the time span of 7 days.
Bothmethods showworse behaviour near critical inclination,
producing very high distance errors and two overflow cases.



Mathematical Problems in Engineering 13

KBMJ12 error
0

2000

4000

6000

8000

10000
Er

ro
r (

m
)

KBMJ12 2 error

(a) KBMJ12 versus KBMJ12 2 distance errors not showing KBMJ12
outliers above 10000m

0

400

800

1200

1600

2000

2400

KB
M

J1
2
2

er
ro

r (
m

)

6
2.
5
≤
i
<
6
3

6
3
≤
i
<
6
3
.3
3

6
3
.3
3
≤
i
<
6
3
.6
6

6
3
.6
6
≤
i
<
6
4

6
4
≤
i
≤
6
4
.5

(b) KBMJ12 2 distance errors in each subinterval

Figure 18: Box and whisker plots of KBMJ12 and KBMJ12 2 distance errors near critical inclination for a time span of 7 days.

In the near future Delaunay variables will be replaced
with nonsingular variables in our propagator so as to avoid
the analyzed singularities, and third-order analytical theories
for 𝑚 > 4 perturbation will be generated. We will also
analyze how using polynomial 𝑇2, (3), instead of 1/(1 −

5cos2𝑖󸀠󸀠) may modify the original Hamiltonian and what its
corresponding phase space may be. Tesseral influence will be
the next perturbation to be included in our propagator.
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