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We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation
theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with
a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase
in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered
in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic

general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.

1. Introduction

The goal of an orbit propagator is to determine accurately
the position and velocity of an object orbiting the Earth,
mainly an artificial satellite or a space debris object. In order
to achieve this, the position and velocity at an initial instant
t, must be known, as well as the set of forces acting on the
orbiter. The main force is the gravitational attraction from an
ideally spherical Earth, but some perturbations exist, such as
the nonsphericity of the Earth, atmospheric drag, the effect
of other celestial bodies, and solar radiation pressure, among
others. All these perturbations are not always taken into
account but only the most determinant ones for the specific
orbiter, depending on its type of orbit and the scientific
requirements for the mission.

In order to solve the problem, the nonlinear equations of
motion of this complex dynamical system must be integrated.
Depending on both the integrating techniques and applied
analytical transformations, three different methods have been
described: general perturbation theory, special perturbation
theory, and semianalytical techniques.

General perturbation methods, also analytical theories,
refer to the analytical integration of the equations of motion,
using perturbation theories based on series expansions [1-8].
General perturbation methods provide analytical solutions
valid for any set of initial conditions. These solutions are

explicit functions of time, constants of the problem, and
integration constants, which are mainly characterized by
retaining the essential behavior of motion. Provided that the
position and velocity of the orbiter at an initial instant t,, are
known, their determination for any other instant ; requires
only one evaluation of the analytical solution.

Nevertheless, it must be noticed that most analytical
theories currently in use do not lead to accurate solutions
but to approximations, mainly due to two reasons. The first
is that only very basic models of external forces are consid-
ered, because in some cases their corresponding analytical
expressions are very complicated. The second reason for such
inaccuracy is that only low-order approximations are usually
developed, since the analytical expansions for the higher-
order solutions may become unmanageably long.

On the other hand, special perturbation methods [9] refer
to the accurate numerical integration of the equations of
motion, including any external forces, even those in which
analytical manipulations are complicated. Nonetheless, in
order to achieve the intended accuracy, it is necessary to use
small integrating steps, which means that all the intermediate
positions of the orbiter must be computed in a dense grid
between f; and t ;.

Finally, semianalytical techniques [10, 11] are character-
ized by combining special and general perturbation methods.
This approach allows for including any external forces in



the equations of motion, which are simplified using analytical
techniques, whereas the transformed equations of motion
are integrated numerically. The determination of the position
of the orbiter in t; also requires the integration of a grid
starting at £, but in this case the grid can be significantly less
dense than in special perturbation methods. Consequently,
depending on both the integrating step and the difference
between t, and t , the efficiency of this method can be very
close to that of the general perturbation theory.

We present a fourth approach, called hybrid perturba-
tion theory, which can combine one of the aforementioned
methods with time series forecasting techniques, based on
either statistics [12-14] or computational intelligence [15]. In
this paper, we focus on the combination of economic general
perturbation theories and neural networks [16-20], which
is one of the most widespread techniques for time series
forecasting in computational intelligence.

The goal of the forecasting part of the method is to
model the dynamics not present in the approximate analytical
expressions, due to the fact that not all the forces acting
on the orbiter may have been considered and also because
the higher-order terms may have been excluded to avoid
extremely long expressions. To allow for the subsequent
increase in precision, the forecaster needs additional data
from which to model absent dynamics. Therefore, besides
knowing the position and velocity of the orbiter at an initial
instant f;, the same magnitudes must also be accurately
known for a certain period of time.

To express this concept in a formal manner, the aim is to
determine an accurate estimation 2tf of the real position and

velocity x, of an orbiter, expressed in any set of variables,

at an instant ¢ .. That estimation will be calculated with the
addition of these two components:

- A~
X, =%, H &, 1)

where xt“; represents the approximate position and velocity
determined by means of the analytical expressions, whilst &,
does so for the neural network forecast of the error of those
expressions at epoch £ .

The first component, xf} , can easily be obtained from
the analytical propagator expressions, which are explicit
functions & of both time t and a known value x, at an initial
instant £:

xt‘j = g(tf,xto). (2)

The second component, Etf, is the output of the neural

network for the instant ¢, after having been trained to
forecast the error of the analytical expressions. We define the
error &, at any instant ¢;, as the difference between the real
value of position and velocity, x; , and the value obtained from

the approximate analytical expressions, xf,
A
&, =X~ Xy (3)

which represents the dynamics missing from the analytical
expressions, due to the simplifications assumed both in the
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considered set of forces and in the number of terms of the
expressions.

The process in order to provide the neural network with
the capability to forecast errors is the training, which requires
knowledge of the real errors ¢ between #, and another
instant ¢, with a regular cadence. According to (3), that
implies knowing the real positions and velocities Xy ,as well as
approximate positions and velocities x:j, fori =0,...,n The
former can be obtained by means of either any observational
method or through the precise propagation of the equations
of motion. Meanwhile, the latter can be easily determined
evaluating the analytical expressions for t = t,...,t,,.

Once the neural network has been trained, it is capable
of forecasting future errors g from previous ones, thus
complementing the approximate analytical expressions so as
to reach more accurate results, as stated in (1).

In this paper, we illustrate and analyze the utility of
the hybrid perturbation theory, considering simple models
with only conservative forces, in order to draw valuable
conclusions regarding its viability.

This paper is organized as follows. The considered ana-
lytical theories are summarized in Section 2. Section 3 briefly
introduces neural network techniques. Section 4 illustrates
the creation of a hybrid orbit propagator in the case of a LEO
orbiter. Finally, Section 5 analyzes the results of the developed
hybrid orbit propagator.

2. General Perturbation Methods

An analytical orbit propagator program (AOPP) is an appli-
cation that collects and arranges all mathematical expressions
involved in an approximate analytical solution of the satellite
equations of motion. The two AOPPs here considered have
been derived from the Kepler problem, which can be solved
analytically (see [21] for more details) and from a first-order
closed-form analytical theory of the main problem of the
artificial satellite theory.

The main problem is defined as a Kepler problem per-
turbed by the Earth’s oblateness. The Hamiltonian of this
dynamical system can be written in a Cartesian coordinate
system (x, X) as

reton tla(®n(E)]

\x%+ y2 + 22, y is the gravitational

constant, « is the equatorial radius of the Earth, ], is the
oblateness coefficient, and P, is the Legendre polynomial of
degree 2.

The first step in carrying out the analytical theory consists
in expressing the Hamiltonian (4) in terms of Delaunay
variables (I, g, h, L, G, H). This set of canonical action-angle
variables can be defined in terms of orbital elements such

asl = M,g = wh = QL = ua, G = ua(l —e?),
and H = \Jpa(l — €?) cosi, where M, w, Q, a, e, and i are

the mean anomaly, argument of the perigee, longitude of the
ascending node, semimajor axis, eccentricity, and inclination,

where r = |x|| =
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respectively. Then, the transformed Hamiltonian is expressed
in Delaunay variables as

> epfa)?
%’:—%—5§<;> (1—3szsin2(f+g)), €)
where € = J, is a small parameter, s = sini, and f is the true
anomaly.

Next, the Hamiltonian (5) is normalized [22] by applying
the Lie transform ¢: (I, g, h, L, G, H) — (', g', W, L',G' H,
which up to first order reads

Ho =, (6)
2
u o
%1=%1—ﬁ— al’l' (7)

Equation (7) is solved by taking %, as the average over the
mean anomaly:

) 3a2uts? alul .
1= 4L'5y/3 B 2L16,7/3’ (8)
and then 7, is computed as
L”
Visa J(%l _ o)) dl
_‘uz(xz (35/2 B 2) ¢ e (3512 B 2) o
- 4L73’,II3 4LI3I7I3 sin f
3lales® ,
AL (1 +20) ®
3lals? | ’ ’
- —SL’317'3 sin (2f +2g )
Wale's”

_ 8L'—311’3Sin(3f, +2g'),

where' = V1-eZand¢' = f' -1,
Hence, up to the first order the transformed Hamiltonian
is given by

#2 ( 30‘2#45!2

2 4
[0
e ¢ ) RN

4L'5y/3 - 2153

We must point out that the Hamiltonian % is integrable
because it only depends on the momenta L',G',and H', and
thus the equations of motion are obtained as

' ox W 3a’ut 9atuts”
dat ~or T8 T\t T e
dg'  ox 3oyt 15a7uts”
a T € L7y - ALy
(11)
d_h' _OX _630c2y4c'
dt  oH' 2Ly’
dL' dG' dH' o

dt  dt dt
12

!
where ¢’ = V1 - s'2.

By integrating (11), we directly obtain the values of the
momenta L', G', and H' as constants, whereas the variables

I, g',and ' yield
2 4 12
Al )](t—to)+l('),

2 2 4
r=£ +c S p
L13 2L’771’3 4LI711’3
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AL )] (t—to) + go» (12)

where I, gy, hy, Ly, Gy, and H, are the transformed initial
conditions Iy, gy, hy> Ly Gy» and H, at the epoch t,,.

Finally, from (9) we can calculate the first-order explicit
equations of the direct and inverse transformations [23].

An AOPP is derived from the above analytical theory,
which has to evaluate 93 terms. This AOPP is called Z2DNI1.
The algebraic manipulations required to carry out this analyt-
ical theory and its corresponding AOPP are built using a set
of Mathematica packages called MathATESAT [24].

Z2DNI begins initializing the physical parameters and
initial conditions at epoch t,. Next, it transforms the initial
conditions into Delaunay variables (I, gy, hy> Ly» Gy, and
H,) and transports them across the inverse transformation
of the Delaunay normalization (I, gy, hy, Ly, Gy, and Hy).
Then, the program provides Delaunay variables at epoch
ty from integrated Hamilton equations @, 4,1, LG,
and H'). Finally, the direct transformation of the Delaunay
normalization is applied, and then the osculating Keplerian
elements (a, e, g, h, i, and [) and the state vector (x, y, z, X, ¥,
and z) can be calculated.

Z2DN1 AOPP has been compared with the numerical
integration of the original problem (4) using a high-order
Runge-Kutta method [25] for the case of a LEO orbiter (a =
7221km, e = 0.0622, and i = 48.98°).

Figure 1shows the distance error in a time span interval of
3 days, which is about 42 orbiter periods. As can be observed,
the distance error of the first-order J, analytical theory when
compared with a more complex perturbation model is at a
level of 1.2 km. Figure 2 shows the orbital element errors.

3. Neural Networks (NN) Overview

Artificial neural networks constitute one of the most
widespread techniques in the field of computational intelli-
gence. They are based on parallel processing of information
by simple units, called neurons, as happens in the brain.
Knowledge resides in the strength of the connections between
neurons, which are called synapses. Such strength can be
reinforced or weakened through a learning process based on
known data, which allows the neural network to acquire and
emulate underlying dynamics in the data. Some of the fields in
which artificial neural networks have been successfully used
are pattern recognition, data classification, data mining, and
time series forecasting.

Figure 3 shows an example of neural network architecture
with three layers: the input layer, which comprises the neural
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FIGURE I: Distance error of the first-order J, analytical theory for a
LEO orbiter.

network inputs, the hidden layer, with a certain number of
hidden neurons, and the output layer, which includes one
neuron per neural network output. The number of inputs
and outputs is determined by the nature of the problem to
be solved, whereas, on the other hand, the number of hidden
layers and hidden neurons may vary. The more hidden layers
are and the more hidden neurons within them are, the higher
processing power the neural network will reach.

The typical connection pattern implies that each input
or each neuron is connected to all the neurons in the
following layer through a set of weights w, which determine
the strength of the synapses. Additionally, neurons have a
special input with a constant value of 1, weighted by a bias b,
which represents the neuron threshold. A neuron collects the
weighted sum of all its inputs and applies it to an activation
function, which can be linear or nonlinear, depending on the
problem to be solved. One of the most frequent nonlinear
activation functions is the hyperbolic tangent.

For example, the value of the output y for the neural
network in Figure 3 is given as

y=g(f (xlwl,l T XWy + X3Ws ) + XgWyy + by) W1 out
+f (xlwl,Z T XWy o + X3Ws 5 + XyWy 5 + b,) Wy out
+f (x1w1,3 T XWy3 + X3W3 3 + X, Wy 3 + b;) W3 out
+f (x1w1,4 T XWy g + X3W3 4 + Xy Wy g + by) Wy out

+b0ut) .
(13)

As can be seen, all the involved operations are products and
additions, together with the selected activation functions,
which can be either calculated or determined by means of a
look-up table, depending on the available hardware.

An initial training process is necessary to find the set
of weights w and biases b that allows the neural network
to behave as desired. In time series forecasting, supervised
training methods are used, which need a training data set
of inputs and target outputs. The difference between the
calculated outputs and the targets regulates the adjustment
of weight and bias values in an iterative process, until such
difference becomes small enough.

Mathematical Problems in Engineering

4. Hybrid Analytical- NN AOPP

4.1. Data Preprocessing. Delaunay variables (I, g, h, L, G,
and H) have been chosen to characterize the orbit. Two
sets of values have been used in this process. The first
consists of accurate simulated values, obtained through the
numerical integration of the original problem (4) using
a high-order Runge-Kutta method, which are considered
as actual values from precise observations. The second is
obtained by applying the analytical methods described in
Section 2; these values are approximate because they assume
the simplifications used in Section 2. In both cases, values
have been generated with a cadence of 1 minute.

Then, ¢, errors have been calculated for each variable,
subtracting both data sets, as stated by (3). After this oper-
ation, the error sequences of the angular variables, that is,
I, g, and h, may include some outliers that differ from the
rest of the values in an approximate quantity of 27. Such
differences correspond to complete spins and, although they
have no effect on trigonometrical calculations, for a neural
network they represent abrupt discontinuities in values that
are actually very close. Therefore, complete spin differences
have to be removed by adding or subtracting 27 from outliers,
as can be seen in Figure 4.

The resulting errors for variable H are always 0 for the
problem considered here, which means that the analytical
theory is able to determine H values accurately. Therefore,
forecasting of H error is not necessary in this case. For each of
the remaining variables, a different neural network has been
used to forecast future error values, which allows for using
parallel training processes.

Data have to be arranged in a suitable format for the
neural network. Forecasting will be done through a sliding
window; a set of consecutive error values constitutes the input
vector from which the neural network has to calculate the
error value for the next instant. In the following step, the
sliding window moves, and the new input vector loses the
initial value, whilst simultaneously appending the recently
forecasted value. This process extends until the final error
value to be forecasted is reached.

Therefore, during this step, each sequence of error values,
&, has to be converted into a set of vectors that will be
used during the training phase of the corresponding neural
network. A sliding window length of 2 orbiter periods has
been taken for this first study, which means that error values
corresponding to the 2 previous periods will be available for
the neural network in order to forecast the next error value.
Since the orbiter period is 102 minutes, and a cadence of 1
minute has been considered, each neural network must have
2102 = 204 inputs and 1 output. Consequently, the training
data sets to be prepared must be sets of vectors specifying the
following error value for each 204-element set of consecutive
error values in each variable.

The number of vectors to be prepared for each neural
network training process depends on the period of time
desired for the neural network to learn the underlying
dynamics. We have chosen for this purpose the duration
of the number of complete orbiter periods which is closest
to 1 day, that is, 14 periods of 102 minutes: 1428 minutes.
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FIGURE 2: Orbital element errors (a, e, i, w, ), and M) of the first-order J, analytical theory.

Therefore, error values from minute 1 to 1428 are used to train
the neural network, and so forecasted values start at minute
1429. Distribution of all these data in 204-element vectors
produces 1225 vectors for the training process of the neural
network in each variable.

Finally, data to be used with neural networks must be
normalized, so that values fall within the neural network
operating range. A linear normalization to the interval [-0.9,
+0.9] has been carried out, maintaining a security margin up
to the [—-1, +1] output range of the hyperbolic tangent activa-
tion function. Consequently, the inverse transformation must
be applied to forecasted values so that they can be restored to
their original ranges.

4.2. Design Parameters. The first step in designing the neural
network is the selection of a network type suitable for the
intended goal. Despite its simplicity, the multilayer per-
ceptron constitutes a good time series forecaster [15]. We
have considered a multilayer perceptron similar to Figure 3
but with a different number of inputs and hidden neurons.
As mentioned in Section 4.1, the number of inputs to the
neural network is 204, whereas the number of neurons in

the hidden layer, which determines the processing capability,
constitutes a parameter for which two different values have
been considered, namely, 30 and 60.

Neural networks can be provided with more than one
hidden layer, but this is not recommended unless the problem
to be solved is extremely complex, due to the increase in
training computational cost. One hidden layer is enough for
the neural network to approximate any function, provided
that it has enough hidden neurons with a nonlinear activation
function type [26-28]. The selected architecture for the work
presented in this paper only includes one hidden layer, as in
Figure 3.

Another design parameter is the type of activation func-
tion for each layer. According to [15], although there are
other alternatives, the use of the hyperbolic tangent for the
hidden layer, together with the linear activation function for
the output layer, is a habitual configuration in multilayer
perceptrons used for time series forecasting; thus this is our
selected architecture.

The most common training algorithm for feedforward
networks, such as the multilayer perceptron, was backpropa-
gation [16]. It consisted in changing the weights in the direc-
tion of the negative gradient of a predetermined performance



X Yol f

X2 Z—)f

X3 Yol f

. 2 f

Input Hidden
layer layer

Mathematical Problems in Engineering

Wiout

bout

— ]

w4,out

Output
layer

FIGURE 3: Neural network with four inputs, one hidden layer containing four neurons, and one output.

6.28 1

0 ‘
15 20 25 3

Time (days)
(a)

Error [ (rad)

0

Error [ (rad)

-0.001 | b

-0.002 | k

0 5 10 15 20 25 30
Time (days)

(b)

FIGURE 4: Error ¢, in variable [ in the case of Z2DN1 AOPP (a) before subtracting complete spins and (b) after subtracting complete spins.

0.11

0.1
0.09
0.08

Error g (rad)

0.07

0.06

3 4 5
Time (predicted periods)

—— Target
—— Prediction 60 neurons

FIGURE 5: Prediction of error g in variable g (Unperturbed
Analytical-NN, 60 neurons in hidden layer).

function, usually the mean square error between the network
outputs and target outputs. A more sophisticated learning
method was developed [29] through the application of the
Levenberg-Marquardt algorithm to backpropagation, which

_ 2887 f
g 3
— 2
g 2
5 =
ug 1.276 go
Z 0666 F
A LY

0 1 2 3
Time (predicted periods)

FIGURE 6: Distance error (Unperturbed Analytical-NN, 60 neurons
in hidden layer, modeled variables: [, g, h, L, and G).

allowed for a remarkable acceleration of between 10 and 100
times faster in the training process.

When designing a neural network for a particular task,
the possibility that overfitting might occur has to be consid-
ered. It happens when the neural network architecture is more
complex than required for the problem to be solved, and this
leads to a loss in the generalization capability, which causes
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FIGURE 8: Prediction of error E,i in variables g, G, and L (Z2DNI-NN, 30 versus 60 neurons in hidden layer).

the neural network output to adjust overexcessively to data
being used in the training, as well as being unable to forecast
new values properly.

Overfitting risk can be minimized through the regulariza-
tion method, which implies the use of the regularized mean
square error performance function, comprising a weighted
sum of both the habitual mean square error plus a new mean
square weight value. As a consequence of the introduction of
this new parameter, lower weight and bias values are preferred
during the training process, leading to a smoother neural
network output, which reduces the possibility that overfitting

may occur. In order to automatically adjust the necessary
parameters, the Bayesian regularization method [30, 31] can
be applied.

The training method we have used is a Matlab implemen-
tation of the Bayesian regularization backpropagation, which
includes the Levenberg-Marquardt algorithm. This process
minimizes a combination of squared errors and weights
in the right proportion to achieve a neural network with
generalization capability.

Finally, a selection of the initial weights and biases in
order to start the training process is necessary, which has been
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carried out according to the Nguyen-Widrow algorithm [32].
This algorithm distributes neuron active regions uniformly in
each layer.

5. Results

After the training phase, the neural network is able to forecast
future errors, &, , in Delaunay variables [, g, h, L, and G. These
errors can be finally added to the variable values, obtained
from the analytical theory, and the result constitutes the
hybrid method output. Two different hybrid methods based
on two different analytical theories have been implemented
and compared with the accurate integration of (4). The
former, which we have called Unperturbed Analytical-NN,
has been carried out from the Kepler analytical solution,
whereas the latter, called Z2DNI-NN, is from a first-order
closed-form analytical theory of the main problem of the
artificial satellite theory. The neural network architecture of
both AOPPs is the same, namely, the multilayer perceptron.
We must note that in the case of the Z2DNI-NN model, two
different neural networks have also been considered, one with
30 neurons in its hidden layer and the other with 60. In
order to compare results, the possibility of restricting neural
network forecasting to a representative subset of Delaunay
variables has been explored.

5.1 Unperturbed Analytical-NN Hybrid-AOPP. The analyt-
ical part of this hybrid-AOPP only takes into account the
Kepler problem, that is, to consider the Earth’s oblateness,
J,, equal to zero in (4). We must note that the Earth’s
oblateness has a strong influence on satellite orbits and
this hybrid-AOPP allows us to analyze the capability of the
neural network in modeling complex dynamics, which are
not present in the analytical calculations. To accomplish this
task, the neural network hidden layer has been provided
with 60 neurons, which, taking into account the number of
inputs, constitutes a neural network that might be sufficiently
powerful.

The most significant Delaunay variables for determining
the studied orbiter position arel, g, and h, as can be concluded
from the analysis of the influence of different subsets of
variables over the distance error of the predicted orbiter

Mathematical Problems in Engineering

position. However, forecasts of their errors €, remain accurate
during a few periods, as can be seen in Figure 5 for variable
g- A more complex neural network and a longer training data
set would be necessary to extend the forecasting horizon.

The other two modeled variables, L and G, have been
forecasted more precisely, but they do not have such a
great influence on the orbiter dynamics as the other three.
Therefore, the orbiter position can only be determined with
relative precision during two periods. Figure 6 shows the
maximum distance errors after periods 1, 2, and 3: 0.666 km,
1.276 km, and 2.887 km, respectively.

5.2. Z2DNI-NN Hybrid-AOPP. 'The second approach is based
on the Z2DN1 AOPP described in Section 2, which includes
part of the first-order effects of the Earth’s oblateness. There-
fore, the neural network only has to model the higher-order
terms. As the dynamics to be modeled are simpler than in the
previous case, the necessary neural network should also be
less complex. First, we have analyzed the effect of having 30
neurons in the hidden layer, and then we have compared the
results with those obtained from a network with 60 hidden
neurons.

Analyzing with 30 neurons, error prediction of some of
the variables quickly deteriorates, as shown in Figure 7 for [
and h, while others maintain accurate forecasts for longer, as
can be seen in Figure 8; the green plots for variables g and
G remain close to their target values up to approximately 25
predicted orbiter periods, that is, 1.8 days. Variable L forecast
performs well even after 16 days, as can also be seen in
Figure 8.

The distance error compared with the real position can
be plotted when all the forecasted errors are added to
their respective analytical values, and the resulting hybrid
output is converted into the coordinates of the orbiter
position. Figure 9 shows acceptable behavior during 1 or 2
periods, with maximum distance errors of 11 m and 345 m,
respectively, both below the maximum errors of the pure
analytical method for such instants, which are 444 m and
473 m, respectively.

Since this result is clearly improvable, a more complex
neural network with 60 hidden neurons has been applied
to the same forecasting task. Then, some of the variable
errors extend their prediction horizon significantly, as can be
seen in Figure 10 for [ and h, in comparison with Figure 7
with 30 hidden neurons. Figure 8 shows an improvement of
approximately 5 orbiter periods in variable G, whereas g and
L remain similar to results with 30 hidden neurons.

When all these error forecasts are transformed into
the orbiter position distance error, as shown in Figure 11,
the hybrid method stands out against the purely analytical
method, reducing the maximum distance error from 828 m
to 22 m after 1 predicted day and from 1242 m to 120 m after 2
days. When only, g, and h errors are forecasted by the neural
network, maintaining the approximate analytical values for
L and G, the distance error hardly increases (24 m instead
of 22m after 1 predicted day and 121 m instead of 120 m
after 2 days), proving that the former are the most important
variables to be forecasted for determining the position of
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the orbiter under study, since the latter can be estimated
analytically with sufficient accuracy.

Finally, Delaunay element errors have been transformed
into the classical orbital element errors (semimajor axis
a, eccentricity e, inclination i, argument of the perigee w,
longitude of the ascending node ), and mean anomaly M)
in Figure 12, which shows a notable improvement to the
hybrid Z2DNI1-NN AOPP over the analytical Z2DNI during
2 predicted days.

5.3. Analysis and Comparison of Results. The hybrid-AOPP
considered in Section 5.1, namely, Unperturbed Analytical-
NN, is characterized by the simplicity of the chosen analytical
method, which only considers the Kepler solution with no
perturbations. Despite the 60 neurons in the hidden layer,
the analytical method is too simple for the neural network
to model the complete error, leading to poor performance.

In Section 5.2, the analytical part of the Z2DNI-NN
hybrid-AOPP includes J, perturbation up to the first order,
which makes it closer to the precise values. Nevertheless,
when the neural network is provided with only 30 neurons in
its hidden layer, very little improvement is achieved during an
extremely short horizon, which reveals the clearly insufficient
power of the neural network for this forecasting task.

In contrast, the increase in the neural network power
caused by the 60 hidden neurons used in the last part
of Section 5.2 leads to a great improvement and a more
satisfactory result.

As a general conclusion for all the analyzed cases herein,
we can state that modeling all the Delaunay variables [, g,
h, L, and G, instead of only I, g, and h, which were the
most representative for this problem, does not extend the
improvement horizon but does increase the improvement
level during that time. H error for this problem was 0 and
thus had no need to be forecasted.

Finally, as far as the validity horizon of predictions is
concerned, we have reached the following conclusions. This
horizon is of only 1 orbiter period for the Z2DN1-NN with 30
hidden neurons, due to the inferior power of the neural net-
work for this prediction task. Meanwhile, the Unperturbed
Analytical-NN AOPP with 60 hidden neurons extends the
horizon but only up to 4 orbiter periods, since the analytical
part of the method does not include perturbations; thus,
the neural network has to model more complex dynamics,
which exceed its prediction capacity. The validity horizon of
predictions extends up to 2 days for the Z2DNI-NN with
60 hidden neurons, which shows a notable initial result
that opens a new field in which to research for further
improvement.

6. Conclusions and Future Work

A new type of orbit propagator program, the hybrid-AOPP,
has been presented. This kind of AOPP consists of an inte-
grating technique, which obtains an approximate solution,
followed by a second phase in which the error is determined
through either statistical time series models or computational
intelligence methods. In this paper, we increase the propa-
gation capabilities of general perturbation theories with one
of the most widespread methods for time series forecasting
in computational intelligence, namely, neural networks. A
hybrid-AOPP, named Z2DNI-NN, has been created. It com-
bines an economic first-order closed-form analytical orbit
propagator and a neural network trained for the case of a LEO
orbiter. It has been shown that the hybrid-AOPP outperforms
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FIGURE 12: Orbital element errors (Z2DNI-NN, 60 hidden neurons, modeled variables: I, g, h, L, and G).

the analytical orbit propagator since it can drastically reduce
the orbiter position error.

At present, we are carrying out research to determine the
most appropriate neural network architectures and param-
eters for the hybrid-AOPPs. Simultaneously, statistical time
series models are also being successfully applied to hybrid-
AOPPs in a parallel research line.
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