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ABSTRACT

We show that quasar microlensing magnification statistics induced by a pop-

ulation of point microlenses distributed according to a mass-spectrum can be

very well approximated by that of a single-mass, ”monochromatic”, population.

When the spatial resolution (physically defined by the source size) is small as

compared with the Einstein radius, the mass of the monochromatic population

matches the geometric mean of the mass-spectrum. Otherwise, the best-fit mass

can be larger. Taking into account the degeneracy with the geometric mean,

the interpretation of quasar microlensing observations under the hypothesis of

a mixed population of primordial black holes and stars, makes the existence of

a significant population of intermediate mass black holes (∼ 100M�) unlikely

but allows, within a two-σ confidence interval, the presence of a large population

(& 40% of the total mass) of substellar black holes (∼ 0.01M�).
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1. Introduction

Quasar microlensing (Chang & Refsdal 1979; Wambsganss 2006) is very useful to mea-

sure the abundance and mass of any population of compact objects of the lens galaxy in

a wide range of masses (see, e.g., Schechter & Wambsganss 2004, Mediavilla et al. 2009;

Pooley et al. 2012; Schechter et al. 2014; Jiménez-Vicente et al. 2015a, 2015b, Mediavilla

et al. 2017, Schechter 2018, Jiménez-Vicente & Mediavilla, 2019). Although most mi-

crolensing studies (see, e.g., Mediavilla et al. 2009, 2017, Schechter et al. 2014

and Schechter 2018) support that the compact objects causing microlensing cor-

respond to the normal stellar population, other works suggest that black holes

may also be contributing to the microlens population (Clesse & Garcia-Bellido

2015, Green 2017, Calcino et al. 2018, Hawkins 2020)

In particular, recent LIGO discoveries related to BH mergers, like the unexpectedly

high rates of detection, their unusual masses or their low spins (see, e.g., Kashlinsky et

al. 2020) suggest that primordial black holes (PBHs) of intermediate mass (10M� . M .
200M�) may constitute a substantial part of the dark matter in the Universe and, hence,

significantly contribute to microlensing. This hypothesis has been analyzed in Mediavilla

et al. (2017) and appears to be inconsistent with current microlensing observations. But

the models used in Mediavilla et al. (2017) are mainly based on a single-mass population

of microlenses, which may be inadequate to describe the strongly bimodal distribution of

PBHs and stars.

Could, then, a significant population of PBHs of intermediate mass be hidden in a mix

with stars?1 A direct and comprehensive study of this possibility multiply the number of

cases to be simulated numerically and may always leave open the possibility of including

additional parameters or considering more complex cases. Here, we propose an alternative

approach, discussing in general the sensitivity of the microlensing magnification statistics

(described by the magnification probability density function, PDF(µ)) to the existence of a

bimodal mass spectrum of compact objects.

The degree of dependence of the microlensing magnification PDF with the spectrum

of the microlens masses has been discussed in many works. The initial conjecture that the

PDF of a point source microlensed by a population of point masses is independent of the

mass spectrum, has been contradicted by several authors (Wyithe & Turner 2001; Schechter

et al. 2004; Congdon et al. 2007). However, Schechter et al. (2004) show that the

1Albeit motivated by LIGO discoveries, this is not the only interesting possibility, we can also consider a

bimodal distribution with stars and BHs of substellar mass.
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shape of the mass function of the microlenses is only expected to be important

for markedly bimodal distributions with a large and comparable contribution to the mass

density from microlenses of very different masses. Otherwise, for smooth mass functions

that span a relatively narrow range of masses, it is usually assumed that the only relevant

parameter is the average mass, implicitly taken as the arithmetic mean (AM). However, in

contrast with the physical phenomenon under study (microlensing by point masses) the AM

is not scale invariant, while the geometric mean (GM) is (see Jiménez-Vicente & Mediavilla

2019).

For a smooth and relatively narrow distribution of masses, the arithmetic and the geo-

metric means are very similar. However, this is not true for a markedly bimodal distribution

of very different masses. Thus, the main objectives of this work are to investigate the role

of the GM when the PDF of a bimodal mass spectrum is approximated by the PDF of a

single-mass and to study the goodness of this approximation.

These objectives are hampered by a practical question already noticed by Schechter

et al. (2014). To approach the point source limit we need to consider magnification maps

of very small pixel size with the subsequent reduction of the magnification map size, to

maintain an affordable total number of pixels (i.e., of basic computational iterations). This

limits the number of high mass microlenses, which, anyway, could not be too large to keep

tractable the number of small microlenses. And this induces a high variability among the

PDFs obtained with different random realizations of the positions of the microlenses (sample

variance). To avoid this scatter, which would make the comparison between PDFs useless,

we use averaged PDFs obtained from a large number (up to 500 in some cases) of random

realizations of the spatial distribution of microlenses (i.e., of magnification maps).

The paper is organized as follows. In §2 we introduce the role of the scale-invariant

geometric mean mass in the statistical properties of quasar microlensing. In §3 we study

the magnification statistics of a linear superposition of point masses discussing the impact

of spatial resolution in an idealized scenario (low optical depth). In §4 we use numerical

simulations to generalize the study to the most realistic case in which cooperative effects

among microlenses are present. Finally, in §5 we summarize the main conclusions.

2. Similarity between magnification maps. Intermediate map between other

two.

As far as the gravitational potential is scale invariant, we expect gravitational lensing

by a single point particle to be also invariant (Schechter et al. 2004). The angle of deflection
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by a particle of mass m,

~α =
4Gm

c2

~ξ − ~ξ0
(~ξ − ~ξ0)2

, (1)

is a power law function of the separation between the light ray and the particle, ~ξ − ~ξ0, and

hence, it is homogeneous with respect to a length dilation, ξ → ξ′ = λξ. Consequently, we

have a mass-length degeneracy (we can conveniently re-scale both, mass and length, leaving

invariant the deflection angle), which makes the physics of lensing by a single point particle

invariant with respect to mass scaling.

The lens equation for a single point particle of mass m, can be written as (see e.g.,

Schneider, Ehlers & Falco, 1992),

~η
Dd

Ds

= ~ξ − DdsDd

Ds

4Gm

c2

~ξ − ~ξ0
(~ξ − ~ξ0)2

, (2)

where ~η and ~ξ are the position vectors at the source and image planes, respectively, and

Dd, Dds and Ds are the angular diameter distances from the observer to the deflector, from

the deflector to the source and from the observer to the source, respectively. Equation 2,

and its derivatives, ~∇~ξ~η, are invariant under a transformation of the mass of the microlens,

m → m′ = λm, if lengths are transformed as ξ → ξ′ =
√
λξ (η → η′ =

√
λη). Thus, the

magnification map, defined from the scaling factor between surfaces in the lens and image

planes, µ(~η) =
∑

I |~∇~ξ~η|
−1
I , where the index I go over all the images of ~η, ~ξI(~η), is also

invariant. Consequently, PDF(µ), which can be inferred from the magnification map as the

fraction of surface that takes the value µ, is as well invariant for a single mass particle. In

Appendix A we formally derive PDF(µ) from µ(~η).

When we have a population of microlenses at positions ξi with massesmi, Eq. 2 becomes,

~η
Dd

Ds

= ~ξ − DdsDd

Ds

∑
i

4Gmi

c2

~ξ − ~ξi
(~ξ − ~ξi)2

. (3)

This equation, and its corresponding magnification map, are also invariant with respect to

a transformation mi → m′i = λmi if ξ → ξ′ =
√
λξ (η → η′ =

√
λη). However, this

is not enough to confirm the invariance, as the projected mass density of the microlenses

population, Σ, is also a constraint of the problem. For ni particles of masses mi, this is given

by:

Σ =
1∫

dξ1dξ2

∑
i

nimi, (4)
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which also fulfills the same mass-length degeneracy than Eq. 3. That means, that all the

microlensing magnification maps corresponding to a fixed mass spectrum, ni(mi) that we

can build changing the mass of the microlenses, mi → m′i = λmi, but preserving the shape

of the mass-spectrum, ni(mi)→ n′i(m
′
i = λmi) = ni(mi), are similar (i.e. they are congruent

after the length scale transformation, ξ → ξ′ =
√
λξ). However, Eq. 3 and its derivatives,

are not invariant with respect to a change in the shape of the mass-spectrum, even if this

change leaves Σ (Eq. 4) unaltered.

Let us now consider two maps of masses m1 and m2. To find a map of mass mGM with

intermediate properties between them, we should find a transformation of similarity that

in a first step overlaps the map m1 with the map mGM and that applied for a second time

overlaps the map mGM with the map m2. That is,

√
λ =

√
m1

mGM

=

√
mGM

m2

. (5)

Thus, mGM is the Geometric Mean (GM), mGM =
√
m1m2, which is scale-invariant. If

the Arithmetic Mean (AM) of the masses were taken instead, we would have obtained two

different scaling factors,

√
λ1 =

√
m1

mAM

,
√
λ2 =

√
mAM

m2

, (6)

with a ratio betweens scaling factors,

√
λ1√
λ2

=
mGM

mAM

, (7)

always less than 1. This means that if we use the non scale-invariant AM we approximate

better the properties of the higher mass microlens. In other words, if we are investigating

some type of degeneracy of a generic distribution of microlenses characterized by a mass-

spectrum with the single-mass case, the single-mass should be reasonably close to the GM

of the mass-spectrum and not to the AM, as it is usually assumed. In many cases this is

not important because the GM and the AM are not very different. However, this can be

very relevant when we are considering bimodal mass-functions with mass ratios of about 10

or greater. In this context, if the magnification map features corresponding to the smaller

mass component are washed out by progressively lower spatial resolutions (induced by the

convolution with the source luminosity profile or by the increase of the pixel size), we expect

a transition from the degeneracy with the GM towards the degeneracy with the mass of the

larger component. In this case, we should also consider an additional smooth surface mass

component to account for the washed out population (Schechter et al. 2014).
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3. Sparse (low optical depth) case.

Better than looking for an intermediate map between other two, we want to study how

the statistical properties of a magnification map (i.e. the PDF(µ)) in which microlenses of

two populations appear mixed, can be mimicked by those of a single-mass map. In principle,

the effect of the combination of the two populations is far from linear as cooperative effects

between microlenses can appear2. In addition, we should take into account that, in general,

the input of the two populations to the total mass may be different. Finally, the spatial

resolution can have a different impact in the contribution of the different populations of

microlenses to the magnification map depending on their mass. To leave aside the problem

of the cooperative effects, we will provisionally suppose that the distribution of microlenses

is sparse enough (i.e. that in a region of a given size in Einstein radii around each microlens

the deflection of the light rays depends only marginally of the rest of microlenses3).

3.1. Sparse case in the point source and infinitesimal pixel limit: degeneracy

with the single point lens

We can start considering the limiting case of a point source (and an infinitesimal pixel).

In this limit, if the distribution is sparse enough, the contribution to the average PDF of each

microlens will tend to the PDF associated to a single, isolated microlens which are all similar

(because of the mass-length invariance) irrespective of the microlens mass. Consequently, the

microlenses mass-spectrum is irrelevant in this limit and only if the physics of the problem

involves a characteristic length, the degeneracy with the single point microlens can be broken.

In principle, the most natural choice for this length may be the source size (provided that

the source size is greater than the pixel size). However, in this study we will prefer to focus

on the pixel size to try to isolate the statistical properties of the microlenses mass-spectrum

from the source properties. In any case, the discretization is nothing but the convolution of

the continuous microlensing magnification map, at the points defined by the sampling grid,

with a constant source of the size of a pixel. Consequently, the results of discretization can

be also interpreted in terms of the presence of a ”pixel source”.

2Even in this general case, it is worth nothing that for particles of masses m1 > m2 > m3, the bimodal

(m1,m2) with the same statistical properties than (m2,m3), is that in which m2 is the GM of m1 and m3.

3In other words, that above the magnification corresponding to this distance, magnification by a single

point lens applies.
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3.2. Sparse case for a finite pixel size: linear superposition of independent

point masses and impact of discretization

A magnification map is a continuous function of two spatial variables. Its discretization

in pixels (or the convolution with the source) implies differences in the PDFs associated to

microlenses of different masses breaking the degeneracy of the infinitesimal pixel limit. To

illustrate this, we can compare magnification maps obtained for different masses and a fixed

pixel size4.

In the low optical depth limit, we can also compare with the linear model for the PDF

of the magnification based on the superposition of independent point masses. The general

applicability of this model is limited by the presence of caustics generated by the interaction

of each microlens with the field created by the rest, but it is quite useful to our purposes.

This model has been discussed by many authors (see, e.g., Paczynski 1986, Peacock 1986,

Schneider 1987, Kofman et al. 1997) and it is straightforward to adapt it to the context of

the magnification maps (see Appendix A).

In Figure 1 we have represented, for κ = 0.1, four PDFs corresponding to masses with

ratios 1 : 0.6 : 0.3 : 0.1. To obtain these high S/N PDFs we have averaged histograms

corresponding to 500 magnification maps. The maps were built up with a spatial resolution

of 0.01 Einstein radii (corresponding to a star of nominal mass equal to 1) per pixel. In the

same Figure we have also represented the linear model (Equation A13), which matches

very well (both, quantitative and qualitatively) the global trend even for relatively low

magnifications (µ & 1.6). The excess bump corresponding to the caustic contributions can

be seen around µ = 2/κ (Kofman et al. 1997). The effect of the finite spatial resolution is that

for high magnifications the PDFs fall below the µ−3 law depicted by the linear approximation

model. The departure is more pronounced for the smallest masses. An interesting result,

in agreement with our hypothesis, is that the PDF with properties intermediate between

the one with the greatest mass (1) and the one with the smallest mass (0.1) is the PDF

closest to the geometric mean (0.3). The PDF corresponding to the arithmetic mean (0.6)

approximates better the PDF of the largest mass (1).

In summary, for a fixed pixel size, the high magnification tail of the PDF associated to

a small mass particle will depart in a greater extent from the linear solution than the one

associated to a bigger mass. As we will see later, the numerical calculations also demonstrate

that this effect of lowering the probabilities of high magnifications when decreasing the mass

4Thanks to the mass-length invariance, this is equivalent to compare maps of a same mass but with

different pixel sizes
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of the microlenses5 is also present for large optical depth.

3.3. Single-mass analysis associated to a bimodal mass-function. Extension to

a generic mass-function.

Once the degeneracy with the point size lens is broken by the discretization (i.e., by the

presence of a ”pixel size” source), the contribution (i.e. the surface coverage) of each mi-

crolens to the map (and hence to the PDF) will be, according to the mass-length invariance,

proportional to its mass. Thus, if we have two different populations with masses m1 and m2

and fraction of mass in microlenses κ1 = n1m1 and κ2 = n2m2, the relative contributions of

each population to the map are, m
κ1/(κ1+κ2)
1 and m

κ2/(κ1+κ2)
2 , respectively. Consequently, the

compromise mass representing the bimodal distribution will be,

mGM = m
κ1/(κ1+κ2)
1 m

κ2/(κ1+κ2)
2 . (8)

This expression can be extended to include the case of a generic mass-function,

mGM =
∏
i

m

(
κi∑
i κi

)
i . (9)

Finally, it is important to comment that the impact of the discretization (interpretable

as the presence of a ”pixel source”) in a magnification map corresponding to a bimodal

mass-function can be very important. In fact, when the pixel size is much smaller than

the Einstein radius associated to the mass of one of the populations but larger than the

Einstein radius corresponding to the other population, the prints of this last population in

the magnification map can be smeared out.

4. Non-sparse case. Numerical Simulations.

When we are not limited to the low mass density case, the cooperative effects among

microlenses make the previous analysis idealized. A study based on numerical simulations

will help us testing to what extent the PDF corresponding to a generic mass-function can

be approximated by that of a single-mass function and to study if the GM hypothesis for

the mass of the ”monochromatic” distribution holds.

5Or the spatial resolution for a constant mass by virtue of the mass-length invariance.
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According to previous studies, the assumption that the microlenses mass distribution

is degenerated with the single-mass case holds for any smooth mass function and there is

agreement (Wyithe & Turner, 2001; Schechter, Wambsganss & Lewis 2004; Congdon et al.

2007) in that only markedly bimodal distributions with a large and comparable contribution

to the mass density from microlenses of very different masses may break the degeneracy and,

even so, only for images that maximize the effects of this bimodality (saddle-point images of

high magnification). Thus, we are going to simulate the PDF of a bimodal mass-spectrum

(mock data) and look for the PDF corresponding to a single-mass function that better fits

the mock PDF. We start considering, for convenience, the case6 κ = 0.55 and γ = 0

to study in this computationally less expensive case the impact of pixel size (i.e. of the

spatial resolution), and then we consider the extreme case of a saddle-point image of high

magnification (κ = γ = 0.55).

4.1. Mock PDFs representing the bimodal mass-function

The relevant parameter to study the bimodal distribution is the ratio between masses,

m1/m2. We compute magnification maps (see Appendix B) for bimodal mass distributions

with mass ratios: m1/m2 = {6.25, 12.5, 25, 50, 100}. Then, we can scale the masses using the

mass-length invariance. For convenience, we will assume a fiducial mass m2 = 0.01 for the

small mass stars and, consequently, m1 = {0.0625, 0.125, 0.25, 0.5, 1}. Nevertheless, to offer a

physically interesting example, we can adopt m2 = 0.3M�. Then, for a typical lens (zl ' 0.5,

zs ' 2.0) we have an Einstein radius η(0.3M�) ' 10 light− days. We start considering that

both components have the same contribution to the total mass density, κ1 = κ2 = 0.55/2

and γ = 0. In a second step (see §4.4) we consider the γ = 0.55 case.

4.2. Model PDFs of the single-mass function

To compare with the above mock data, we compute another set of magnification maps

(models) based on single-mass populations to determine the likelihood of these models of

reproducing the statistical properties corresponding to the bimodal mass-function. We adopt,

for the single-mass component, fiducial masses from m = 0.01 to m = 0.2 in linear steps

of 0.01 (i.e. masses from 0.3 to 6M� in linear steps of 0.3M�, in the case of the physical

example above considered, m2 = 0.3M�).

6This case is unrealistic but useful to to exemplify the impact of spatial resolution.
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Using the Inverse Polygon Map technique (Mediavillla et al. 2006, 2011), we generate

(see Appendix B) 200 different magnification maps corresponding to different random posi-

tions of the microlenses, for each set of mock (m1/m2, κ, γ) or model (m, κ, γ) parameters.

Finally, the 200 histograms of the magnification maps are averaged in order to calculate

a mean histogram and its standard deviation for each mock (ĥi(m1/m2), σ̂i(m1/m2)) and

model (hi(m), σi(m)). The index i runs through all the histogram bins. To avoid edge

effects, 200 border pixels of the magnification maps are removed.

4.3. Comparison between PDFs, best fit and results (κ = 0.55, γ = 0)

To assess the similarity between the PDFs, we can use a χ2 test. For each histogram of

the mock data, ĥi(m1/m2) we can compute χ2(m;m1/m2) as,

χ2(m;m1/m2) =
∑
i

(
ĥi(m1/m2)− hi(m)

)2
σ̂2
i (m1/m2) + σ2

i (m)
, (10)

where hi(m) is the histogram of the single-mass model and the index i corresponds to the

different bins of the histogram. The dependence of χ2(m;m1/m2) with mass, m, is shown

in Figure 2. In the same Figure we show the best fits for each one of the 5 mock data

histograms and the likelihoods of the models,

p(m;m1/m2) ∝ e−
1
2
χ2(m;m1/m2). (11)

The errors in the approximation of mock PDFs by best-fit model PDFs are small. The

best-fit single-mass distribution approximates the bimodal with average errors ranging from

0.04% to 0.13% when the mass ratio m1/m2 of the bimodal ranges from 6.25 to 100, and the

worst-case error from 6% to 18% in the same interval of mass ratios.

In Figure 3 we compare the best-fit mass with the geometric mean. We have considered

3 different pixel sizes to take into account the effect of the finite pixel size discussed above.

The considered pixel sizes correspond to 0.0011, 0.0022 and 0.0044 Einstein radii (i.e.

to 0.125, 0.25 and 0.50 light-day for a 30M� star).

The results clearly support the degeneracy with the GM modulated by the map res-

olution (or, physically, by the source size). For the highest resolution the best-fit masses

closely match the geometric mean. However, they progressively take values larger than the

GM when the resolution is lowered by a factor of two or four.
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Notice that, as discussed in §3.2, the impact of a given pixel (or source) size is different

for different masses. For this reason if we look in Figure 3 to the points corresponding to the

resolution that better matches the GM, we see that while the lower mass ratios are clearly

above the GM, the higher ones match better the GM (a similar trend with the separation

from the GM can be seen for the points corresponding to the other two resolutions). This

is a consequence, once more, of the mass-length degeneracy: a given pixel size corresponds

to a smaller fraction of the Einstein radius for larger masses and, hence, the impact of pixel

size (moving the points above the GM curve) is less noticeable for the larger masses. In any

case, it is clear from Figure 3 that, leaving aside the modulation induced by the pixel (or

source) size, the mass-spectrum is close to the GM and far away from the AM.

These results are based on a particular definition for the ”distance” between the his-

tograms given by Eq. 10. However, there are many other different possible definitions of

distance between two histograms. It is interesting to define a family of distances, D2
α, to

check the dependence of the similarity between histograms with the choice of measure. With

this aim, we compute D2
α(m;m1/m2) as,

D2
α(m;m1/m2) =

∑
i

(
ĥi(m1/m2)− hi(m)

)2
(
ĥi(m1/m2)+hi(m)

2

)α . (12)

Notice that the parameter α can be used to regulate the relevance of the different bins of

PDF(µ) in the measure of distance. We obtain quite similar values for α = 1, which is

alike to Pearson’s χ2 test and for α = 2, which gives more weight to the high magnification

bins. However, the uncertainty in the determinations of the maximum likelihood estimates is

greater for α = 1. In fact, in the case of the Euclidean distance, α = 0, the results are rather

erratic. This is not strange, as the Euclidean distance strongly enhances the contribution of

the low magnification bins, which, as we know from §3.2 are quite insensitive to the microlens

mass. In fact, if we restrict in Eq. 12 the sum to bins with microlensing magnification larger

than 1 (i.e., ∆mmicro < 0, in magnitudes), the results obtained with the Euclidean distance

also match those obtained with Eq. 10. This is an interesting result by itself: regions of

microlensing magnification larger than 1 are much more sensitive to the effects of changing

the microlens masses than regions with no magnification or demagnification. And this result

is not unexpected if we take into account that, by virtue of the length-mass degeneracy, an

increase in mass is alike with an increase in spatial resolution, which, obviously affects more to

the high magnification regions, which are associated to larger gradients in the magnification

maps. This also confirms the results of the low optical depth case. At any rate, in our

experience, a correct determination of the histograms in the low magnification bins, needs

a huge computational effort (see Appendix B) and any result related to this region of the
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histograms should be regarded with special caution.

To explore the impact of the high magnification tail in the previous results, we have

also limited, in the previous equations, the sum to bins with magnifications in the −2 <

∆mmicro < 0 interval, obtaining results very similar to those obtained in the whole interval,

although with larger uncertainties.

4.4. The extreme bimodal case (κ = γ = 0.55)

Let us now consider a limiting case, a saddle point image of high magnification (κ = γ =

0.55), which strongly enhances the effects of bimodality (Schechter et al. 2004). In Figure 4

we compare the GM, the AM and the best-fit results for this high magnification case. We

have also adopted the same 5 mass ratios m1/m2 = {6.25, 12.5, 25, 50, 100} considered above.

Details about the calculations can be found in Appendix B. It is clear, also in this extreme

case, the good approximation provided by the single mass model with a mass corresponding

to the GM.

5. Discussion: constraints on a mixed population of stars and PBHs

The main results of the previous sections are that the PDF(µ) corresponding

to a single-mass microlens distribution can approximate rather well the PDF(µ)

of a bimodal distribution, and that the best-fit mass of the single-mass distri-

bution matches the GM of the bimodal (provided that the spatial resolution is

small as compared with the Einstein radius of the smallest microlenses). These

results, which simplify the study of a mix of stars and BHs, are robust with

respect to the criteria used to compare the PDFs. We have even considered an

extreme bimodal case with mass ratio of 1/100, and for one type of image that

maximize the effects of this bimodality (a saddle-point image with κ = γ = 0.55,

Schechter et al. 2004), showing that these conclusions are applicable to virtually

any sensible smooth mass function. Ideally, more extreme mass ratios (<1/100)

and other values in the (κ,γ) plane may be explored, but it seems that the se-

lected parameters are representative of the mix of stars and intermediate mass

BH.

Thus, if we apply the results of the previous sections to the single mass study of a

hypothetical mix of PBHs with normal stars, we would expect that the best-fit mass would

be, at least, the geometric mean. In fact, as far as quasar source sizes are supposed to be
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comparable or larger than ∼ 1 light−day7, i.e., greater than the pixel size adopted here (for

a reasonable value of the stellar mass, m2 = 0.3M�), we can expect that the monochromatic

mass estimates based on observations are even greater than the GM.

We can use this result to explore the likelihood of a mixed population of PBHs and stars

according to microlensing observations available in the literature. Specifically, we can

reinterpret the data and results from Mediavilla et al. 2017 but considering

now that, according to the present work, the masses inferred by these authors

using a single-mass function should be taken as a lower limit of the GM of the

bimodal mix of stars and BHs. Thus, if we consider a bimodal distribution with stars

of 0.1M� (conservative small value to lower the GM) and 100M� PBHs, the monochromatic

best-mass fit should be greater than 3M�. If we locate this mass in the likelihood function,

L(α,M), for the mass fraction, α, and (best-fit) mass, M , of the monochromatic population

of microlenses, inferred by Mediavilla et al. (2017) from the optical microlensing observations

(Figure 1 of these authors), we find a very low probability. Thus, the reinterpretation of

the microlensing observations and results presented in Mediavilla et al. (2017) does not

support the presence of a large population of massive PBHs mixed with the normal stars,

even when a mass-spectrum is considered for the distribution of the microlenses.

Very interestingly, the case for substellar mass PBHs is not discarded, within a 2σ

confidence interval, by microlensing observations. If we consider now a bimodal distribution

with PBHs of 0.01M� and stars of 0.3M� (a conservative large value to increase the GM),

the resulting GM is ∼ 0.05M�, which falls within the 2σ confidence level in the likelihood

function inferred from optical observations by Mediavilla et al. (2017, see Figure 1 of these

authors), and corresponds to a range of fraction of mass in microlenses from 20 to 40%. This

GM will also fall within the 1σ confidence interval of the likelihood function corresponding

to X-ray observations (see Figure 2 of Mediavilla et al., 2017), although in this case the

fraction of mass in microlenses will be less than 40%.

Notice that the GM is a lower limit and that the increase of the best-fit mass of the

monochromatic population above the GM due to the convolution with the quasar source,

may change the likelihood. In the case of the small mass PBHs an increase of the likelihood

can be expected. On the other hand, the convolution with the source brightness profile

may wash-out in the magnification maps the features of microlensing induced by the small

mass component, thus making its contribution to the total magnification similar to that of

a smooth matter distribution (see, e.g., Schechter et al. 2014). Consequently, a thorough

7Notice that, at visible wavelengths, the quasar size can be of several light-days (see, e.g.,

Fian et al. 2016).
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analysis of the likelihood of a mixed population of stars and PBHs needs to include, in

addition to the single-mass population, a smooth matter component which can account for

the washing-out of the small mass population due to the finite size of the source. This

approach is computationally very time consuming and we will defer it for a forthcoming

work.

6. Conclusions

In the context of the recent detection by LIGO of a population of interme-

diate (. 100 M�) mass BHs, we study the impact of the mass-spectrum of the lenses

in the magnification statistics of quasar microlensing considering a mixed population of

stars and PBHs. To avoid particularizing to a specific model, we discuss in general

the sensitivity of microlensing magnification statistics to a bimodal distribution

of compact objects. We study both, the low optical depth case in which a theoretical

approach is possible and the non sparse case for which numerical simulations are needed.

We take special care in the calculations to avoid the noise induced by edge effects on the

magnification maps and by sample variance. The main conclusions are the following,

1 - In the low optical depth case, we verify that the PDF with properties inter-

mediate between those of the PDFs related to two different masses, corresponds

to the geometric mean of the two masses. It is also worth to mention that the

average of 500 different realizations of the numerical PDFs in order to avoid sample variance,

highlights with unprecedented S/N ratio, the excellent matching of the linear model and the

departures induced by the spatial resolution in the high magnification tail.

2 - Numerical simulations, needed to consider the high optical depth case,

show that a single-mass distribution can approximate very well the statistical properties of

a strongly bi-modal case8 with a mean (worst-case) error . 0.1% (. 10%) in the range of

studied mass ratios (from 6.25 to 100, with convergence κ = 0.55). This result strongly

simplifies the study of a mixed population of stars and BHs.

3 - The simulations also support that the mass of the ”monochromatic” case that best

fits the bi-modal distribution is close to the geometric mean of the bi-modal distribution9,

8And, presumably, of any smoother mass function.

9This conclusion is robust with respect to the choice of distance between histograms al-

though the low magnification bins (∆mmicro & 0) are less sensitive to the change of the mass

of the ”monochromatic” model. In any case, the results are not critically dependent on the
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as suggested by the mass-length invariance. This result depends on the spatial resolution

(limited in our case by the pixel size). If the pixel size is small compared with the Einstein

radius, the best-fit mass will match the GM. However, if the pixel size is large enough the

best-fit mass will take values above the GM. We interpret this as a selective washing out

(induced by the loss of spatial resolution) of the imprints of the small mass component of

the bi-modal distribution (Schechter et al. 2014).

4 - As far as quasar source sizes are supposed to be comparable or larger than 1 light−
day, i.e., larger than the pixel sizes adopted here (for a reasonable value of the stellar mass,

m2 = 0.3M�), we can expect that the mass estimates based on observations are at least

the geometric mass or even greater. Consequently, the results derived from microlensing

observations by Mediavilla et al. (2017) can be reinterpreted taking the geometric

mass as a lower limit of the mass of the ”monochromatic” distribution. We find

that microlensing observations do not support the presence of a large population of mas-

sive PBHs even when a mass-spectrum is considered for the distribution of the microlenses.

However, a significant contribution from substellar BHs can not be discarded within a 2σ

confidence interval, although simulations including a smooth mass component are needed to

have a clearer picture.
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A. Explicit solution of PDF(µ) as a function of µ(~η)

The probability density function of the microlensing magnification, PDF(µ), is propor-

tional to the surface of the magnification map that takes this value, PDF(µ)dµ ∝ dS(µ).

Let us now consider a collection of open sets Vi that cover the source plane excepting the

caustics, ∪Vi = R2−{C}, and are pairwise disjoints, Vi ∩Vj = ∅, ∀i, j. If it is possible to do

this source-plane partition which leaves the caustics outside the open sets, the magnification

high magnification tail of the distribution (∆mmicro . −2).
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map, µ(~η), is a continuously differentiable function in each one of the open sets,

µ : Vk → R, ~η → µ(~η), (A1)

and we can apply the implicit function theorem. According to this theorem, for each open

set of the partition, it is possible to obtain an explicit solution ~ηi(l, µ0), of the curve defined

by µ(~η)−µ0 = 0 (i.e., the contour line µ = µ0), where l is a parameter, which we will identify

with the length of the curve. Thus, the surface of the open set, Vi, where the magnification

map takes the value µ0 is,

dSi(µ0) =

∫
~ηi(l,µ0)

|d~η⊥| dl, (A2)

where dl =
√

(dη1)2 + (dη2)2 and d~η⊥ is an infinitesimal displacement perpendicular to

~η(l, µ0). As µ is differentiable, we write,

dµ = ~∇µ · d~η = |~∇µ||d~η⊥|, (A3)

and,

|d~η⊥| =
dµ

|~∇µ|
. (A4)

Substituting in Eq. A2 and taking into account that PDF(µ0)dµ ∝
∑

i dSi(µ0), we finally,

obtain,

PDF(µ0) ∝
∑
i

∫
~ηi(l,µ0)

dl

|~∇µ|
. (A5)

We can use this expression to derive the PDF of a linear superposition of inde-

pendent point masses (see §3.2). In dimensionless units, ~y = ~η/η0, where η0 is

the Einstein radius projected in the source plane, the radial dependence of the

total magnification of a point source induced by a single point mass is given by,

µ(y1, y2) =
y2 + 2

y
√
y2 + 4

, (A6)

where y =
√

(y1)2 + (y2)2 is the radial distance to the microlens. The equation to

calculate PDF(µ) (Eq. A2) written in dimensionless units is,

PDF(µ) =
1

Ay

∫
~y(l,µ)

dl

|~∇µ|
, (A7)

where Ay is the magnification map area. In this case µ is discontinuous only

at the origin and, consequently, we need only one open set to cover all the
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magnification map excluding the origin. The curves of constant µ, ~y(l, µ) are

circles of length,

l(µ) = 2πy(µ). (A8)

Inverting Eq. A6 for µ ≥ 1 we have,

y(µ) =
√

2

√√√√−1 +

√
µ2

(µ2 − 1)
, (A9)

and,

dy = − 1

(µ2 − 1)
3
2

√
2

√
−1 +

√
µ2

(µ2−1)

dµ. (A10)

On the other hand, as |~∇µ| is constant along each ~y(l, µ) circle,

PDF(µ) =
1

Ay

∫
~y(l,µ)

dl

|~∇µ|
=

1

Ay

l

|dµ
dy
|
. (A11)

Substituting from Eqs. A8, A9 and A10, we obtain the PDF of a single point

lens,

PDF(µ) =
1

Ay

2π

(µ2 − 1)3/2
. (A12)

If we multiply by the total number of microlenses, κ
π
Ax, where κ is the projected

mass density in dimensionless units, and Ax =
∫ ∫

dx1dx2 is the area of the image

plane mapped onto Ay, we can obtain the PDF for a linear superposition of point

masses,

PDF(µ) = 2〈µ〉 κ

(µ2 − 1)3/2
, (A13)

making use of the definition of mean magnification, 〈µ〉, as the ratio between

mapped areas.
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B. Magnification map computations

When the mass ratio of the components is very large (∼ 100), the computation of a mag-

nification map corresponding to a bimodal distribution of microlenses is not straightforward.

In fact, computed magnification maps show a tendency to have a mean magnification smaller

than the one theoretically expected. This aspect may not be relevant for many applications

but can become very important when comparing via a χ2 test our mock and model PDFs.

To analyze this problem we make some simulations taking progressively larger circular

regions for the stellar distribution and removing the borders of the maps before computing

the mean magnification. We find that when there is a small number of microlenses, those

that are close to the borders sometimes ”pull out” rays (i.e. bits of the image plane area) that

would have fallen into the magnification map if the distribution of matter were smooth, and

sometimes ”put” in the map rays that would have fallen outside of the limits of the map in

the case of the smooth matter distribution. As far as the size of the shooting region oversizes

by a large factor the region of the image plane that is mapped onto the magnification map

in the case of the smooth matter distribution, this would not be a problem: in some maps

the magnification would be greater and in other smaller than the theoretical one but the

average of the histograms will converge to the theoretical one. However, if the oversize is

not large enough10 the rays diverted outside the map will not be compensated by the rays

diverted into the map. This aspect is specially critical when you have a bimodal distribution

with very small and very big microlenses, because you will tend to have a small number of

big lenses and the fluctuations will be considerably larger. Thus the solution is to have large

circular distributions of microlenses and large shooting regions.

For the case (κ = 0.55, γ = 0), we have computed, using the Inverse Polygon Mapping

technique (IPM, Mediavilla et al. 2006, 2011), maps of 3.78 × 3.78 Einstein radii and 3380

× 3380 pixels with microlenses distributed in a circle of 17.82 Einstein radii of radius. In

the case of the mass ratio equal to 100, that means 87 BHs and 8732 stars. The shooting

region size extends 12.6 × 12.6 Einstein radii. We remove 200 border pixels from the maps

to avoid edge effects. Each histogram is the result of the sum of 200 histograms to mitigate

the effects of sample variance, which could make all the study useless.

The situation is more complicated in the high magnification (κ = 0.55, γ = 0.55)

case, for the shooting region size needs to be significantly larger. In this case we have

also computed maps of 3.78 × 3.78 Einstein radii and 3380 × 3380 pixels but now with

microlenses distributed in a circle of 80.19 Einstein radii of radius. In the case of the mass

10The needed oversize depends on the mass of the microlenses.



– 19 –

ratio equal to 100, that means 1768 BHs and 176819 stars. The shooting region size extends

56.7 × 56.7 Einstein radii. We remove 400 border pixels from the maps to avoid edge effects.

Each average histogram is the result of the sum of 45 histograms. Although this number

is smaller than the 200 histogram averaged in the (κ = 0.55, γ = 0) case, notice that the

size of the image plane region mapped back onto the magnification map (and, hence, the

number of microlenses) is significantly larger in the high magnification case, even improving

the statistical significance of the final average histograms.

The computation of this huge quantity of large size and high resolution

maps has been possible thanks to the use of IPM (Mediavilla et al. 2006, 2011).

The concepts and parameters of IPM are similar to those of the more familiar

technique of Inverse Ray Shooting (IRS). In both methods a congruent lattice

of points (defining cells which tessellate the image plane) is backwardly trans-

ported to the source plane using inverse lens mapping. In the case of IRS, the

magnification of each source-plane pixel is made proportional to the number of

points (”rays”) that hit the pixel. In the case of IPM, an algorithm based in

Green’s theorem is used to exactly apportioning the area of each cell among

the source-plane pixels covered by the transformed cell. In this way, the crit-

ical quantity in terms of accuracy and computation time, the number of rays

(cells) per unlensed pixel, can be drastically reduced by two orders of magni-

tude or more. The main drawback of the current IPM codes is the lack of an

hierarchical-tree algorithm (available in many IRS based routines) to avoid the

linear dependence of computation time with the number of microlenses.
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– 20 –
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Mediavilla, E., Muñoz, J. A., Falco, E., et al. 2009, ApJ, 706, 1451
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Fig. 1.— Data points are the numerical PDFs corresponding to κ = 0.1 for four different

masses with ratios 1 : 0.6 : 0.3 : 0.1 (red : orange : green : blue). The blue continuous curve

is the linear superposition model (see text). Notice the smoothness of the numerical PDFs,

which are the average of 500 histograms to remove the effects of sample variance.
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Fig. 2.— From top to bottom panels correspond to a BH mass (in arbitrary units): m1 =

0.0625, 0.125, 0.25, 0.5, 1. We adopt a mass for the stellar population, m2 = 0.01, so that

m1/m2 = 6.25, 12.5, 25, 50, 100. Left column: χ2, vertical lines mark the minimum (dark

blue) and the GM (red). Middle column: PDFs inferred from χ2 with ±1σ intervals in

green. Right column: mock (yellow) and model best-fit (green) histograms. (See text).
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Fig. 3.— Case κ = 0.55, γ = 0. We represent the best fit mass, m, versus the BH mass,

m1 in arbitrary units. (We adopt a mass for the stellar population, m2 = 0.01, so that

m1/m2 = 6.25, 12.5, 25, 50, 100). Data points correspond to the best fit masses, m, for three

different resolutions: 3380 pixels × 3380 pixels (yellow), 1690 pixels × 1690 pixels (orange)

and 845 pixels × 845 pixels (green). The red (blue) curve is the GM (AM). See text.
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Fig. 4.— As Figure 3 but for the case κ = γ = 0.55. Data points correspond to the best

fit masses, m, for a 3380 pixels × 3380 pixels resolution. The red (blue) curve is the GM

(AM). See text.
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