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Estimation of the lot fraction defective in a finite lot of products

with auxiliary quality characteristics

ABSTRACT
Many companies use sampling plans for the acceptance or rejection of lots of prod-
ucts. The final outcome of this decision-making process i s based on the inspection of 
a sample of products selected from a lot under inspection, where a quality character-
istic is observed. An important parameter of interest related to acceptance sampling 
for attributes is the proportion of defective items. This parameter is unknown for a 
given lot of products, but it can be estimated from the aforementioned sample infor-
mation. Additional quality characteristics can be observed at the inspection stage. 
We propose to use this auxiliary information to obtain more accurate estimators of 
the lot fraction defective at the estimation stage. Various relevant applications of this 
process are described. For possible scenarios that may arise in practice, the empirical 
properties of the suggested estimation methods are investigated using Monte Carlo 
simulations, and desirable results are obtained when there is a strong relationship 
between the quality characteristic of interest and the auxiliary quality characteristic.

KEYWORDS
quality control; operating characteristic curve; lot fraction defective; distribution 
function; Monte Carlo simulation

1. Introduction

In today’s competitive markets, companies have to provide products and services with
the best possible relationship between quality and price. In this respect, the use of
quantitative techniques for assessing and monitoring the quality of business production
plays an important role in achieving product improvements and boosting productivity.
This in turn may enhance customer satisfaction, drive sales and thus increase earnings.
The set of statistical tools used to assess the quality of products is referred to as
statistical quality control, and it can be divided into three categories (Besterfield 2014;
Mitra 2008; Montgomery 2009): statistical process control; acceptance sampling; and
design of experiments.

Acceptance sampling is one of the oldest quality assurance techniques, and it in-
volves the inspection of and decision-making about products, i.e., acceptance sampling
is used to decide whether to accept or reject lots of products shipped from produc-
ers/suppliers (Baklizi and El Masri 2004). We refer to the process of inspecting the
sample of products as the inspection stage. Acceptance sampling can be performed
using single, double or multiple sampling plans (Balakrishnan, Leiva, and López 2007;
Montgomery 2009; Tomohiro, Arizono, and Takemoto 2016). A sampling plan basically
consists of a sample size and the decision criteria for acceptance or rejection of the lot
under inspection. This paper discusses the acceptance sampling for attributes based



on a single sampling plan. The quality of a lot of products under inspection is ana-
lyzed in relation to one or more product characteristics, called quality characteristics.
A product is said to be defective if at least one of the examined quality characteristics
does not satisfy a specific quality requirement. For example, a product can be classified
as defective if the quality characteristic is outside the specification limits, which are
usually set by customer requirements (Montgomery 2009; Muñoz-Rosas et al. 2016).

An important parameter related to a single sampling plan for attributes is the
proportion of defective items. For a given lot submitted for inspection, this parameter
is defined as

p =
D

N
, (1)

where N is the lot size,

D =

N∑
i=1

di (2)

is the number of defective items in the lot, and di takes the value 1 if the ith item in the
lot is considered as defective, and di = 0 otherwise. Note that p is unknown at the lot
level, since it depends on D, which is also unknown. However, p may be estimated by
using the sample information, and this phase is referred to as the estimation stage. This
information on the proportion of defective items has multiple applications, hence the
estimation of p with desirable properties has a relevant interest in practice. The main
purpose of this paper is to investigate different methods of estimating the parameter p,
and to determine which of these may provide more accurate results than the customary
method used in practice and defined in Section 2 (see equation (3)).

It is fairly common practice to analyze various quality characteristics of the products
under inspection when conducting acceptance sampling. For example, multivariate
quality control (Cabana and Lillo 2022; Lowry and Montgomery 1995) assesses sev-
eral related quality characteristics. For various reasons (to avoid multicollinearity, for
the sake of simplicity, etc.), univariate quality control can be a better option than mul-
tivariate quality control. This issue is discussed in Section 2.1. We consider univariate
quality control, but the information collected from the additional quality characteris-
tics is taken into account at the estimation stage (Berger and Muñoz 2015; Fernández
and Pérez-González 2012) to obtain a more accurate estimator of the proportion of
defective items (p).

The estimation of our parameter of interest p is based on difference type estimators
(Rao, Kovar, and Mantel 1990), but alternative estimation methods can be found in
the literature, such as poststratification (Silva and Skinner 1995) and logistic regression
(Lehtonen and Veijanen 1998) estimators.

Our results indicate that the proposed estimator is more efficient than the customary
method, when there is a strong relationship between the auxiliary quality characteris-
tic and the quality characteristic of interest. In particular, the proposed method can be
more efficient when the Pearson’s correlation coefficient (ρ) is larger than 0.9, and the
gain in efficiency increases as ρ increases. Note that the presence of a strong relation-
ship between quality characteristics is quite common in several products, especially
when such quality characteristics are based on continuous measurements. For instance,
certain specification limits are required of the products obtained from a production
process, and for stable processes (i.e., in statistical control) with small variations and
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cases where the use of correlations is appropriate (e.g., quality characteristics based
on continuous measurements), it is reasonable to assume a strong correlation between
the quality characteristics. A number of studies support this argument. For example,
Caudill et al. (1992) simulate various quality characteristics to investigate the effect
of different correlation coefficients, and the case of ρ = 0.9 is included. Shil, Singh,
and Mehta (2019) and Roy et al. (2021) use multivariate statistical quality control
techniques, with many quality characteristics showing values of ρ larger than 0.9. Liu
et al. (2018) identify a quality characteristic of interest, and the value of ρ with an
auxiliary quality characteristic is ρ = 0.871.

The rest of the paper is organized as follows. Some applications of the problem of es-
timating the proportion of defective items are described in Section 1.1. The customary
estimator of p is described in Section 2, along with a discussion of different estima-
tion methods based on auxiliary information and applied to the context of acceptance
sampling for attributes. The empirical properties of the various estimation methods
are investigated in Section 3 using Monte Carlo simulations, showing desirable results
under certain conditions. Our findings are summarized in Section 4.

1.1. Justification for the estimation of p and applications

Although acceptance sampling was not designed for estimation purposes, the informa-
tion observed in this process can be valuable for many reasons. First, both producers
and consumers want to avoid costly mistakes in the phase of accepting or rejecting a
lot (Heizer and Render 2014), i.e., the producer wants to avoid the mistake of having a
good lot rejected, as it typically has to be replaced (this is referred to as the producer
risk), and the customer wants to avoid the mistake of accepting a bad lot, since defects
found in a lot that has already been accepted are usually the consumer’s responsibility
(this is referred to as the consumer risk). Note that many sampling plans are based
on both producer and consumer risks (see, for example, Aslam et al. 2013; Divecha
and Raykundaliya 2022; Kannan, Jeyadurga, and Balamurali 2022). A well-designed
acceptance sampling plan not only reduces the cost and time of inspection but also
provides the desired protection to the producer and the consumer (Wu et al. 2015).
An estimated value of the proportion of defective items may provide both producer
and consumer with valuable information about the actual level of quality of the lot
under inspection, and this resulting knowledge is often a useful input into the overall
quality planning and engineering process.

Furthermore, it is generally accepted that lots should be homogeneous, and if this is
not the case, the consumer may put financial or psychological pressure on the supplier
to improve the production process. The proportion of defective items can be an appro-
priate indicator in this situation. For instance, an unusual value of the proportion of
defective items can motivate the supplier to revise and/or improve the process control.

Various curves based upon the proportion of defective items are commonly used
to evaluate sampling plans. The operating characteristic (OC) curve (Mitra 2008;
Montgomery 2009) analyzes the performance of the acceptance sampling plan, i.e., it
graphs the discriminatory power of the sampling plan. The OC curve plots the values
of the theoretical probability of accepting a lot (Pa) versus different values of p. The
average outgoing quality (Duffuaa and Khan 2008; Mitra 2008; Montgomery 2009),
AOQ, is a measure used for the evaluation of a rectifying sampling, i.e., it gives the
expected average level of quality of the items in a lot when it leaves an inspection
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point. The AOQ is defined as

AOQ =
Pap(N − n)

N
,

where n is the sample size associated with the sampling plan. The AOQ curve plots
the values of AOQ versus different values of p. Finally, the average total inspection
(Mitra 2008; Montgomery 2009), ATI, gives the average number of items inspected
per lot, and this measure is defined as

ATI = n+ (1− Pa)(N − n).

Likewise, the ATI curve plots the values of ATI versus different values of p. We
observe that the parameter p is used in the construction of the OC, AOQ and ATI
curves, which in turn are used to evaluate sampling plans. An estimation of p can
be used to detect possible deviations between this quantity and the theoretical value
of p. In such cases, the aforementioned deviation between p and its estimator may
have an impact on the evaluation of sampling plans. In addition, the calculation of Pa

depends on the proportion of defective items p (Montgomery 2009, 638), which may
be unknown and then must be replaced by an accurate estimate of this parameter for
the problem of estimating the probability of accepting a lot. For the reasons given
above, good estimators of p are required in the context of sampling plans.

The consumer, sometimes in conjunction with the producer through contractual
agreements, may specify two target values in a given sampling plan: the acceptable
quality level (AQL) and the rejectable quality level (RQL). Sampling plans can be
designed to specify performance at the AQL and RQL values, and the proportion of
defective items in the lot (p) plays an important role in this performance (Chukhrova
and Johannssen 2018). For instance, the consumer quite often designs the sampling
plan so that the probability of acceptance in the OC curve is large at the AQL, and
the correct evaluation of the OC curve depends on an efficient estimation of p. For this
purpose, an accurate estimation of the proportion of defective items is essential, and it
can be used as an audit tool to ensure that the output of a process meets requirements
(Montgomery 2012). Similarly, the knowledge of the proportion of defective items is
key for sampling plans based on the Process Capability Index (PCI), as can be seen
in Pearn and Wu (2007), Wu and Pearn (2008), and Yen et al. (2020).

Sampling plans are not static: each sampling plan can be replaced by another one
that is better suited to possible new conditions and/or requirements. In addition,
sampling plans that require much less inspection can be implemented as the pro-
ducer/supplier builds a satisfactory relationship with the consumer over time, and
this desirable reputation of quality can be supported by the results of the sampling
activities. Indeed, the estimation of the proportion of defective items can be used for
this purpose.

2. Estimation based on auxiliary quality characteristics

The acceptance sampling technique is required because the value of D is unknown,
which implies that the parameter p is also unknown according to equation (1). The
value of p may be estimated by using the information collected from the sampling
plan. We consider a single sampling plan for attributes (see Montgomery 2009), which
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consists in selecting a sample s, with size n, from the lot with size N . Then, the
observed number of defective items in the sample,

d =

n∑
i=1

di,

is compared to the acceptance number c, which is set in advance. In other words, the
lot under inspection is accepted if d ≤ c, and it is rejected otherwise. The customary
estimator of the lot fraction defective p when samples are selected under simple random
sampling without replacement is given by

p̂ =
d

n
. (3)

2.1. Auxiliary quality characteristics

Let y be the quality characteristic of interest. The observed value of y for the ith
product in the lot is denoted by yi, where i = {1, . . . , N}.

Many databases are obtained from the lot inspection stage, and they may con-
tain several quality characteristics that are related to the quality characteristic of
interest (Amiri, Zou, and Doroudyan 2014). Some examples of these characteristics
can be found in studies on multivariate quality control, as it is a method based on
several related quality characteristics (Lowry and Montgomery 1995; Shahriari and
Abdollahzadeh 2009). For instance, when controlling a fiber-production process, the
single-strand break factor can be evaluated through an auxiliary quality characteristic
such as the weight of the textile fibers. Also, in the manufacturing process for a specific
carbon fiber tubing where the quality characteristic of interest is the inner diameter,
two related quality characteristics usually considered are the thickness and the length
of tubes (Haq 2017), and this justifies their use as auxiliary characteristics. This infor-
mation is sometimes available because many of the quality characteristics are based on
a simple measurement that is not difficult to obtain and track. Although the multivari-
ate methods can offer important benefits, they can also suffer from certain problems,
such as the fact that they cannot be applied in the presence of multicollinearity, which
is more likely to appear when the relationship between the quality characteristics is
strong. In addition, the univariate methods may perform better than the multivariate
methods, and in such case the univariate techniques are preferred because they are
easier to use and simpler to interpret than multivariate methods.

We consider the univariate case, i.e., we assume processes based on a single qual-
ity characteristic. However, databases may contain additional quality characteristics
related to the characteristic of interest. For instance, products derived from a produc-
tion process may have to meet some fixed specifications, and it is reasonable to assume
that some of the quality characteristics have a strong correlation when the process is
stable and variations are small. This is the case with the examples illustrated by Shil,
Singh, and Mehta (2019) and Roy et al. (2021), where the quality characteristics have
values of ρ larger than 0.9. The Pearson’s correlation coefficient between the auxiliary
quality characteristic and quality characteristic of interest in the example described
by Liu et al. (2018) is ρ = 0.871. The idea of this paper is to define the parameter
p (see equation (1)) in terms of the distribution function, and then make use of the
auxiliary quality characteristics at the estimation stage, since the proper use of the
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auxiliary information may provide estimators with a smaller variance or mean square
error (Berger and Muñoz 2015; Muñoz, Álvarez-Verdejo, and Garćıa-Fernández 2018;
Rao, Kovar, and Mantel 1990). For the variable y and the observations taken from a
lot, with size N , the distribution function for a given argument t is defined as:

F (t) =
1

N

N∑
i=1

δ(yi ≤ t), (4)

where δ(A) is the indicator variable that takes the value 1 if the expression A is true,
and the value 0 otherwise. For instance, δ(yi ≤ t) = 1 if yi ≤ t, and δ(yi ≤ t) = 0 if
yi > t. Thus, F (t) gives the percentage of products in the lot satisfying yi ≤ t. For
simplicity, we assume a single auxiliary quality characteristic, which is denoted by x.
However, the proposed estimators can easily be extended to several auxiliary quality
characteristics (see Rao, Kovar, and Mantel 1990), which could yield more accurate
results.

2.2. Suggested estimation methods

In this section, the lot fraction defective p is expressed in terms of the distribution
function F (·) defined by equation (4) (see equation 5). Thus, estimators of p can be
proposed by substituting each distribution function F (·) with estimators of this pa-
rameter that are based on auxiliary information, and which may have a smaller mean
square error. For simplicity, we assume specifications limits, which are values between
which the quality characteristic should operate in order to have a non-defective prod-
uct. For the case of a process with two-sided specification limits, the ith product is
classified as defective if the quality characteristic is outside the lower (LSL) and the
upper (USL) specification limits, i.e., yi < LSL or yi > USL. The values di (see
equation (2)) are given by

di = δ(yi < LSL) + δ(yi > USL),

where di = 1 indicates that the ith product is defective, and di = 0 otherwise. The
extension to one-sided specification limits is straightforward. The lot fraction defective
can be defined as

p =
1

N

N∑
i=1

di =
1

N

N∑
i=1

[δ(yi < LSL) + δ(yi > USL)] =

=
1

N

N∑
i=1

[δ(yi ≤ LSL) + 1− δ(yi ≤ USL)− δ(yi = LSL)] =

= 1 + F (LSL)− F (USL)− P (LSL), (5)
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where

P (t) =
δ(yi = t)

N

is the proportion of items in the lot that satisfy the condition yi = t. Note that P (LSL)
approaches 0 when y is a continuous quality characteristic.

For data sets with auxiliary quality characteristics related to the quality charac-
teristic of interest, the estimation stage may include such auxiliary information, i.e.,
estimators based on auxiliary variables can be used. The related literature suggests
that estimation methods based on auxiliary variables are expected to produce more
accurate results (Muñoz, Álvarez-Verdejo, and Garćıa-Fernández 2018; Rao, Kovar,
and Mantel 1990). In the presence of auxiliary information, difference type estimators
can be used to improve the estimation of a given parameter. We investigate the empir-
ical properties of two difference type estimators in the context of acceptance sampling
plans. Such estimators are denoted by p̂d and p̂d.dm in this paper, and they are defined
using the notation followed by Rao, Kovar, and Mantel (1990). The classical difference
type estimator of F (t) is given by

F̂d(t) = F̂ (t) + Fx(t)− F̂x(t),

where

F̂ (t) =
1

n

n∑
i=1

δ(yi ≤ t),

F̂x(t) =
1

n

n∑
i=1

δ(β̂xi ≤ t)

and

Fx(t) =
1

N

N∑
i=1

δ(β̂xi ≤ t),

where

β̂ =

∑n
i=1 yixi/υ

2(xi)∑n
i=1 x

2
i /υ

2(xi)

is the estimator of the parameter β under the regression model

yi = βxi + υ(xi)ui (i = 1, . . . , N), (6)

and where υ(·) is a known, strictly positive function, and the ui are independent
and identically distributed random variables with mean equal to 0. The use of υ(·)
in this regression model indicates that this model has heteroscedastic errors (Berger

and Muñoz 2015). It is fairly standard practice to consider υ(xi) = x
1/2
i (Muñoz,
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Álvarez-Verdejo, and Garćıa-Fernández 2018), which implies that

β̂ =

∑n
i=1 yi∑n
i=1 xi

in this situation. Similarly, P (t) may be estimated by using a difference type estimator.

For this purpose, we replace δ(yi ≤ t) by δ(yi = t) and δ(β̂xi ≤ t) by δ(β̂xi = t), i.e.,

P̂d(t) = P̂ (t) + Px(t)− P̂x(t),

where

P̂ (t) =
1

n

n∑
i=1

δ(yi = t),

P̂x(t) =
1

n

n∑
i=1

δ(β̂xi = t)

and

Px(t) =
1

N

N∑
i=1

δ(β̂xi = t).

The difference type estimator of p is defined as

p̂d = max{0, 1 + F̂d(LSL)− F̂d(USL)− P̂d(LSL)}. (7)

Note that p̂d is also motivated by the results derived from Rao, Kovar, and Mantel
(1990), which justify the fact that the values

d̂i = δ(β̂xi < LSL) + δ(β̂xi > USL) = δ(xi < LSLx) + δ(xi > USLx)

are predictors of the values di in the regression equation (6). This issue can be used to
extend this method to cases involving several auxiliary quality characteristics. For this
purpose, such auxiliary variables must be included in the regression model. The value
d̂i = 1 indicates that the ith item is defective according to the estimation based on x
and model (6), and where the specification limits for the auxiliary quality characteristic
are given by

LSLx =
LSL

β̂
; USLx =

USL

β̂
.

Assuming this second estimation perspective, the difference type estimator can also
be defined as

p̂d = max{0, p̂∗d},
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where

p̂∗d = p̂+ px − p̂x,

p̂ is defined in equation (3), and

p̂x =
1

n

n∑
i=1

d̂i

is the customary estimator of

px =
1

N

N∑
i=1

d̂i.

The lot fraction defective p commonly takes values close to 0. If this is indeed the
case, the estimator p̂∗d can take values smaller than 0, since the difference estimator

F̂d(t) proposed by Rao, Kovar, and Mantel (1990) can take values outside the interval
[0, 1]. The estimator p̂d is thus truncated at 0 to avoid the presence of negative values.
Note that this technique is usually applied when an estimation method can provide
results outside a reasonable range of values. For example, limits of confidence inter-
vals for proportions are truncated when any of them take values outside the interval
[0,1]. Rao, Kovar, and Mantel (1990) report some desirable properties related to the

estimator F̂d(t) of the distribution function F (t), and they can also be applied to the
context of acceptance sampling for attributes. For instance, there is a relevant gain in
the efficiency of the estimator p̂d when the quality characteristic y is approximately
proportional to the quality characteristic x.

Rao, Kovar, and Mantel (1990) also defined a difference type estimator of F (t),
which has the desirable property of being asymptotically both design-unbiased and
model-unbiased under model (6). This estimator of the distribution function is given
by

F̂d.dm(t) = F̂ (t) +
1

N

N∑
i=1

Ĝi −
1

n

n∑
i=1

Ĝi,

where

Ĝi =
1

n

n∑
j=1

δ

(
ûj ≤

t− β̂xi
ν(xi)

)

and

ûj =
yj − β̂xj
ν(xj)

.
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The proportion P (t) can also be estimated using this method, i.e.,

P̂d.dm(t) = P̂ (t) +
1

N

N∑
i=1

Ĝ∗
i −

1

n

n∑
i=1

Ĝ∗
i ,

where

Ĝ∗
i =

1

n

n∑
j=1

δ

(
ûj =

t− β̂xi
ν(xi)

)
.

Following the definition of p given by equation (5), the second difference type esti-
mator of p is defined as

p̂d.dm = max{0, 1 + F̂d.dm(LSL)− F̂d.dm(USL)− P̂d.dm(LSL)}.

We observe that the auxiliary quality characteristic needs to have all the measure-
ments corresponding to the lot. This requirement for estimators based on auxiliary
information has been widely discussed in the literature. First, auxiliary quality char-
acteristics must be chosen in such a way that they are based on a simple measurement
that is not difficult to obtain and track. In the case of a lot of products, the weight of
the product can be a good candidate for an auxiliary quality characteristic, since the
total weight of the lot, for example, can be easily measured. Alternatively, different
statistical methods have been proposed in the literature to estimate the total sums
associated with auxiliary variables. For instance, a simple solution is to use two-phase
sampling (Legg and Fuller 2009; Muñoz, Álvarez, and Rueda 2014). Finally, the ex-
tended regression estimator (Berger, Muñoz, and Rancourt 2009) can also be used.
This estimation method is frequently used in business surveys, as well as in official
surveys such as the Canadian Labour Force Survey. Särndal, Swensson, and Wretman
(2003) state that the use of estimators based on auxiliary variables can give more
accurate results, and they can be easily applied to a variety of practical situations.

3. Monte Carlo simulations

In this section we investigate the empirical properties of the various estimators of p
using Monte Carlo simulation (Jurun and Pivac 2011; Silva and Skinner 1995). For
this purpose, we use real and artificial data sets, which are treated as finite lots of
products, to which single sampling plans are applied.

3.1. Description of lots and sampling plans

We generated artificial lots to represent some real cases that can be observed in prac-
tice. The effects of various estimation methods under such scenarios are then analyzed.
For example, we empirically investigate the impact on the estimation stage of different
correlation coefficients reflecting the relation between the auxiliary quality character-
istic and the quality characteristic of interest. Moreover, we investigate the efficiency
in relation to the problem of estimating the proportion of defective items in the data
set pistonrings (Montgomery 2009; Scrucca 2004). The effect of the value of ρ on the
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estimation stage is also analyzed by simulating auxiliary quality characteristics with
different correlations. Note that this method was also used by Caudill et al. (1992).
The main characteristics of the different finite lots and the sampling plans used in this
study are described below. The OC curves related to the sampling plans used in this
study are also presented.

First, we consider finite lots with sizes N = {500, 1000, 10000}, and set the spec-
ification limits at LSL = 95 and USL = 105. For each lot size N , we generate the
quality characteristics of interest

yj → N(µy, σyj),

where µy is the target value, σyj is the standard deviation, and j denotes the proportion
of defective items associated with the quality characteristic yj when the specification
limits LSL = 95 and USL = 105 are used. We consider a proportion of defective items
between 1% and 10% (p = {0.01, 0.02, . . . , 0.10}) to investigate the impact of different
values of p on the various estimation methods. We choose the parameters µy = 100
and

σyj =
5

z1−j/2

because they provide our desired proportions of defective items. In particular, we find
that the selected values for µy, σyj , LSL and USL satisfy

p = 1− P (LSL ≤ yj ≤ USL) = 1− P

(
LSL− µy

σyj
≤ Z ≤ USL− µy

σyj

)
=

= 1− P (−z1−j/2 ≤ Z ≤ z1−j/2) = 1− (1− j) = j,

which justifies j coinciding with the proportion of defective items, and explains the
choice for the parameters µy, σyj , LSL and USL.

For each quality characteristic of interest yj , an auxiliary quality characteristic xjk
is obtained using the equation

xjk = yj + ϵxk,

where

ϵxk → N(0, σϵk).

The standard deviation σϵk is selected such that the correlation coefficients between
the auxiliary quality characteristic and quality characteristic of interest take the values
ρ = {0.7, 0.9, 0.95}, and the performance of the analyzed estimation methods under
different correlation coefficients can thus be investigated. We consider the sampling
plans {n = 50; c = 4} and {n = 100; c = 8} in the case of artificial lots. The OC curves
related to the various sampling plans are plotted in Figure 1.

We also consider a finite lot based on the pistonrings data set (Montgomery 2009;
Scrucca 2004), where the quality characteristic y is the inside diameter of pistons used
in an automobile transmission. This data set is duplicated twice to get a finite lot
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Figure 1. OC curves for various sampling plans used in the Monte Carlo simulations. The sampling plans

{n = 50; c = 4} and {n = 100; c = 8} are used in the case of artificial lots, and the sampling plan {n = 30; c = 2}
in the pistonrings data set.

Table 1. Lower and Upper specification limits (LSL and USL, respectively) and proportions of defective
items considered in the pistonrings data set.

LSL USL p
73.9780 74.0220 0.02
73.9815 74.0185 0.05
73.9845 74.0155 0.11

with N = 250 pistons. The mean and the standard deviation of y are given by 74 and
0.01 millimeters, respectively. The considered specification limits and values of p are
described in Table 1.

Following Caudill et al. (1992), the quality characteristic xk is obtained using the
procedure described for artificial lots, i.e.,

xk = y/2 + ϵxk,

where

ϵxk → N(0, σϵk).

We consider the values σϵk = {0.0025, 0.0015} for the standard deviation, since they
provide, respectively, the values ρ = {0.9, 0.95} for the correlation coefficients between
the auxiliary quality characteristic and quality characteristic of interest. The sampling
plan {n = 30; c = 2} is considered in this case, and the corresponding OC curve is
also plotted in Figure 1.

The aim of this paper is to evaluate the performance of estimators of p. The value of
p has an important effect on the performance of estimators, hence the suggested Monte
Carlo simulation is based on a wide range of values for this parameter. In addition, we
evaluate additional aspects that have a relevant impact on the estimation, such as the
correlation coefficient, the lot size, and the sample size. We consider n = {30, 50, 100}
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to investigate the performance of estimators under small and medium sample sizes.
Larger sample sizes are omitted because it is expected that the various estimators all
perform well in this situation. Summarizing, this study is based on different values of
N , n, c, p, and ρ, and it implies that a total of 186 different scenarios are analyzed.
Data sets and the open-source code (using the statistical software R) used to obtain
the results derived from simulation studies are available in Muñoz et al. (2023).

3.2. Description of empirical measures for the comparison of estimators

The most common measures used to compare the precision of different estimation
methods are the empirical relative root mean square error (RRMSE) and the empirical
relative bias (RB). The various estimators of p are compared in terms of RRMSE
and RB, which are defined as

RRMSE[p̃] = 100×
√

MSE[p̃]

p
,

and

RB[p̃] = 100× E[p̃]− p

p

where p̃ denotes a given estimator of the parameter p, and E[·] and MSE[·] are,
respectively, the empirical expectation and the empirical mean square error based on
R = 10000 simulation runs, i.e.,

E[p̃] =
1

R

R∑
i=1

p̃(i)

and

MSE[p̃] =
1

R

R∑
i=1

(p̃(i)− p)2,

where p̃(i) denotes the value of the estimator p̃ at the ith simulation run. Other

authors that use the same empirical measures are Muñoz, Álvarez-Verdejo, and Garćıa-
Fernández (2018), and Silva and Skinner (1995).

3.3. Results and conclusions

For the case of artificial lots, the performance of the various estimators of p can be
seen in Figures 2 and 3. Figure 2 analyzes the efficiency of the various estimators
in terms of the empirical measure RRMSE. The estimator p̂d.dm is more efficient
than p̂d, since p̂d.dm has the smallest values of RRMSE regardless of p values. As we
expected, the difference type estimators of p (p̂d and p̂d.dm) become more efficient as
the linear correlation coefficient (ρ) increases. In particular, they are more efficient
than the customary estimator (p̂) when ρ = {0.9, 0.95}. We also observe that the
various estimators have a better performance in terms of efficiency as values of both
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n and p increase. For the extreme case of low proportions, the estimator p̂d.dm also
performs better than p̂ under the scenario of a strong relationship between the quality
characteristics (ρ = 0.95).

Figure 2. Values of the empirical measure RRMSE of the various estimators of the proportion of defective

items (p): customary (p̂); difference (p̂d); and difference.dm (p̂d.dm). We considered finite lots with sizes N =

500, the sampling plans {n = 50; c = 4} and {n = 100; c = 8}, and linear correlation coefficients ρ =
{0.7, 0.9, 0.95}.

As far as the bias of the various estimators is concerned (see Figure 3), we observe
that the customary estimator gives values of RB close to 0% for the various values of
p. The biases of the difference type estimators are smaller as the values of p increase.
For instance, the estimator p̂d.dm has reasonable biases, with values of RB less than
5%, when p is larger than 1% and ρ = {0.9, 0.95}. The bias of p̂d.dm under the extreme
case of low proportions (p = 1%) can be explained by the fact that this estimator is
truncated at 0, as discussed in Section 2. However, we observe that this issue does
not have an impact on the efficiency of p̂d.dm, since this estimator is more efficient
than p̂ when p = 1%. Moreover, we observe that the biases of p̂d.dm are negligible
when p = 1% if we increase the sample size (n) and/or ρ is large. The empirical
properties of the different estimators of p were also investigated for finite lots with sizes
N = {1000, 10000}; since similar conclusions were reached under the new scenarios,
the results are omitted.

Results derived from the finite lots with sizes N = 500 (Figures 2−3) indicate
that the estimator p̂d.dm is more efficient than the customary estimator p̂ for large
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Figure 3. Values of the empirical measure RB of the various estimators of the proportion of defective items

(p): customary (p̂); difference (p̂d); and difference.dm (p̂d.dm). We considered finite lots with sizes N = 500,
the sampling plans {n = 50; c = 4} and {n = 100; c = 8}, and linear correlation coefficients ρ = {0.7, 0.9, 0.95}.

Pearson’s correlation coefficients. The same conclusion can be drawn from Table 2,
which contains the empirical results derived from the pistonrings data set. p̂d.dm is
more efficient than p̂ for the various cases analyzed in this table, although the gain in
efficiency is more notable when the proportion of defective items is small and the linear
correlation coefficient is large. For example, the values of RRMSE of the estimators
p̂d.dm and p̂ are, respectively, 44.8 and 110.7 when p = 0.02 and ρ = 0.95. In general,
reasonable biases are observed for the various estimators.

4. Discussion and concluding remarks

Acceptance sampling plans are decision-making tools used in many companies for the
acceptance or rejection of finite lots of products. Some tools that can be used for the
evaluation of sampling plans are the OC, AOQ and ATI curves. What these curves
have in common is the fact that they depend on the proportion of defective items (p).
In addition, sampling plans may be based on target values, such as the AQL and the
RQL, and the parameter p also plays an important role in this situation. In practice,
the value of p associated with a given sampling plan is fixed, but its value is unknown
for a given lot under inspection, and it may differ from the fixed target value. This
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Table 2. Values of the empirical measures RRMSE and RB of the various estimators of the proportion of

defective items (p): customary (p̂); difference (p̂d); and difference.dm (p̂d.dm). We considered the pistonrings

data set (N = 250), the sampling plan {n = 30; c = 2}, and linear correlation coefficients ρ = {0.9, 0.95}.

RRMSE RB
ρ p p̂ p̂d p̂d.dm p̂ p̂d p̂d.dm

0.95 0.02 110.7 38.7 44.8 0.2 5.6 0.6
0.05 76.3 55.2 50.7 0.8 4.3 0.8
0.11 48.9 38.2 34.7 0.5 1.1 0.2

0.90 0.02 109.2 38.5 44.9 -0.8 5.8 0.5
0.05 76.2 54.8 49.9 0.5 5.4 1.5
0.11 48.7 38.6 34.8 0.7 0.5 0.0

is one reason why accurate estimators of p are needed. Random samples are used in
the process of implementing acceptance sampling plans, and the quality characteristic
of interest is observed at this stage. Sample information can be used to estimate the
parameter p. In addition, the sample may contain information on additional quality
characteristics, which could be used at the estimation stage to obtain more accurate
estimators of p.

The main aim of this paper is to investigate this idea and analyze the empirical prop-
erties of the suggested estimation methods based on auxiliary quality characteristics.
First, we showed that the parameter p can be expressed in terms of the distribution
function F (·), which is defined in equation (4). Consequently, p is estimated using es-
timators of the distribution function. We considered difference type estimators, since
they are reliable methods in the context of survey sampling. Note that alternative
estimators of the distribution function have also been analyzed, such as the poststrat-
ification (Silva and Skinner 1995) and the logistic regression (Lehtonen and Veijanen
1998) estimators. However, the suggested difference type estimators performed better
at estimating p, and for this reason the alternative estimation methods are omitted.

The assumption of the existence of one or more auxiliary quality characteristics
is justified by the extensive literature on multivariate quality control (Cabana and
Lillo 2022; Lowry and Montgomery 1995), i.e., it is fairly common to assume that
the sample may contain information on various quality characteristics. The novelty
of this paper is to implement acceptance sampling plans based on a single quality
characteristic, but making good use of the additional information at the estimation
stage. This methodology is a popular topic in the context of survey sampling (Berger
and Muñoz 2015; Rao, Kovar, and Mantel 1990; Särndal, Swensson, and Wretman
2003), and may yield desirable results in terms of accuracy.

The empirical properties of the various estimators have been analyzed under dif-
ferent scenarios, i.e., we considered various types of lots, sampling plans, correlation
coefficients between the quality characteristics, etc. First, we observed that the dif-
ference type estimator p̂d.dm is the most efficient (in terms of RRMSE) estimator
when the value of the linear correlation coefficient between the quality characteristics
is large (ρ = {0.9, 0.95}), and an important gain in efficiency has been observed in the
pistonrings data set. The difference type estimator p̂d performs better than the corre-
sponding customary estimator under a strong linear correlation coefficient (ρ = 0.95).
For ρ = {0.9, 0.95}, the estimator p̂d.dm has reasonable relative biases when p is larger
than 1%. For p = 1%, the biases of p̂d.dm decrease as the sample size (n) and/or the
linear correlation coefficient (ρ) increase.
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For simplicity, we considered the standard linear regression model defined by equa-
tion (6). We expect an improvement in the results if the proposed model had a better
fit to the data under study. However, the idea was to describe the suggested estima-
tion methods using a simple and common linear model. The extension to alternative
models is straightforward and it may yield more accurate results. Likewise, we con-
sidered a single auxiliary quality characteristic at the estimation stage. The suggested
estimation methods can also be generalized to the case of several auxiliary quality
characteristics (Särndal, Swensson, and Wretman 2003), and desirable results are also
expected.

Data availability statement

Data sets and all the analyses are open and reproducible. We used a Rmarkdown
document to explain statistical computing concepts and provide the R scripts used
in this article. This supplemental material for reproducibility can be seen at the OSF
repository (see the file ”186DataSetsRcodesProportions.html” in Muñoz et al. (2023)).
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