Protección cardiovascular con flavonoidesenigma farmacocinético

  1. Juan Duarte
  2. Francisco Pérez-Vizcaíno
Journal:
Ars pharmaceutica

ISSN: 2340-9894 0004-2927

Year of publication: 2015

Volume: 56

Issue: 4

Pages: 193-200

Type: Article

DOI: 10.4321/S2340-98942015000400002 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Ars pharmaceutica

Abstract

Objetives: Flavonoids have been proposed to exert beneficial effects in the prevention of cardiovascular diseases. In this review we try to clarify some fundamental questions regarding efficacy, mechanism of action and bioavailability of one of the most widely distributed flavonoids in the diet, quercetin. Methods: The database of the National Library of Medicine, Washington, DC (MEDLINE PubMed) was used and all the studies in animals and humans available from inception of the database until November 2015 were collected. Results: Quercetin exerts vasodilatory and antihypertensive effects in animal models of hypertension and hypertensive subjets. Quercetin is effective in all models of hypertension analyzed, independently of the origin of the hypertension, the status of renin-angiotensin system, oxidative stress, nitric oxide, and other factors. Paradoxically, despite exerting biologically demonstrable systemic effects, it is not found in plasma after oral administration and its circulating metabolites show weak activity in vitro. Quercetin is extensively metabolized into methylated and glucurono- and sulfo-conjugated metabolites, which are the plasma circulating forms; and glucurono-, but not sulfo-conjugates, can be hydrolyzed at the vascular level, yielding the parent aglycone which accumulates in tissues. Thus conjugation is a reversible process and, at least regarding the vasodilator and antihypertensive effects, the conjugation-deconjugation cycle appears to be an absolute requirement. Conclusions: Glucuronidated derivatives transport quercetin and its methylated form, and deliver to the tissues the free aglycone, which is the final effector.

Bibliographic References

  • Perez-Vizcaino, F, Duarte, J. (2010). Flavonols and cardiovascular disease. Mol Aspects Med.. 31. 478-494
  • Martínez-Flórez, S, González-Gallego, J, Culebras, JM, Tuñón, MJ. (2002). Flavonoids: properties and anti-oxidizing action. Nutr Hosp.. 17. 271-278
  • Hertog, MG, Feskens, EJ, Hollman, PC, Katan, MB, Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 342. 1007-1011
  • Manach, C, Scalbert, A, Morand, C, Remesy, C, Jiménez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr.. 79. 727-747
  • Geleijnse, JM, Launer, LJ, Van der Kuip, DA, Hofman, A, Witteman, JC. (2002). Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr.. 75. 880-886
  • Hertog, MG, Bueno-de-Mesquita, HB, Fehily, AM, Sweetnam, PM, Elwood, PC, Kromhout, D. (1996). Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev.. 5. 673-677
  • Huxley, RR, Neil, HA. (2003). The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr.. 57. 904-908
  • Miedema, MD, Petrone, A, Shikany, JM, Greenland, P, Lewis, CE, Pletcher, MJ. (2015). The Association of Fruit and Vegetable Consumption During Early Adulthood With the Prevalence of Coronary Artery Calcium After 20 Years of Follow-Up: The CARDIA Study. Circulation.
  • Duarte, J, Perez-Vizcaino, F, Utrilla, P, Jiménez, J, Tamargo, J, Zarzuelo, A. (1993). Vasodilatory effects of flavonoids in rat aortic smooth muscle: Structure-activity relationships. Gen Pharmacol.. 24. 857-862
  • Carlstrom, J, Symons, JD, Wu, TC, Bruno, RS, Litwin, SE, Jalili, T. (2007). A quercetin supplemented diet does not prevent cardiovascular complications in spontaneously hypertensive rats. J Nutr.. 137. 628-633
  • Machha, A, Mustafa, MR. (2005). Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol.. 46. 36-40
  • Romero, M, Jimenez, R, Sanchez, M, Lopez-Sepulveda, R, Zarzuelo, MJ, O'Valle, F. (2009). Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis. 202. 58-67
  • Sanchez, M, Galisteo, M, Vera, R, Villar, IC, Zarzuelo, A, Tamargo, J. (2006). Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens.. 24. 75-84
  • Duarte, J, Jimenez, R, O'Valle, F, Galisteo, M, Perez-Palencia, R, Vargas, F. (2002). Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J Hypertens.. 20. 1843-1854
  • Galisteo, M, Garcia-Saura, MF, Jimenez, R, Villar, IC, Wangensteen, R, Zarzuelo, A. (2004). Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats: Comparative study with verapamil. Planta Med.. 70. 334-341
  • Garcia-Saura, MF, Galisteo, M, Villar, IC, Bermejo, A, Zarzuelo, A, Vargas, F. (2005). Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem.. 270. 147-155
  • Aoi, W, Niisato, N, Miyazaki, H, Marunaka, Y. (2004). Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat. Biochem Biophys Res Commun.. 315. 892-896
  • Mackraj, I, Govender, T, Ramesar, S. (2008). The antihypertensive effects of quercetin in a salt-sensitive model of hypertension. J Cardiovasc Pharmacol.. 51. 239-245
  • Jalili, T, Carlstrom, J, Kim, S, Freeman, D, Jin, H, Wu, TC. (2006). Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J Cardiovasc Pharmacol.. 47. 531-541
  • Rivera, L, Moron, R, Sanchez, M, Zarzuelo, A, Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring). 16. 2081-2087
  • Yamamoto, Y, Oue, E. (2006). Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem.. 70. 933-939
  • Barker, DJ. (1998). In utero programming of chronic disease. Clin Sci (Lond). 95. 115-28
  • Buckley, AJ, Keseru, B, Briody, J, Thompson, M, Ozanne, SE, Thompson, CH. (2005). Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism. 54. 500-507
  • Liang, C, Oest, ME, Prater, MR. (2009). Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol.. 86. 377-384
  • Turnbull, F. (2003). Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 362. 1527-1535
  • Edwards, RL, Lyon, T, Litwin, SE, Rabovsky, A, Symons, JD, Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. J Nutr.. 137. 2405-2411
  • Egert, S, Boesch-Saadatmandi, C, Wolffram, S, Rimbach, G, Muller, MJ. (2010). Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr.. 140. 278-284
  • Conquer, JA, Maiani, G, Azzini, E, Raguzzini, A, Holub, BJ. (1998). Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr.. 128. 593-597
  • Perez, A, Gonzalez-Manzano, S, Jimenez, R, Perez-Abud, R, Haro, JM, Osuna, A. (2014). The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol Res.. 89. 11-8
  • Manach, C, Williamson, G, Morand, C, Scalbert, A, Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans: I. Review of 97 bioavailability studies. Am J Clin Nutr.. 81. 230S-242S
  • Gugler, R, Leschik, M, Dengler, HJ. (1975). Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol.. 9. 229-234
  • Day, AJ, Mellon, F, Barron, D, Sarrazin, G, Morgan, MR, Williamson, G. (2001). Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res.. 35. 941-952
  • Williamson, G, Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans: II. Review of 93 intervention studies. Am J Clin Nutr.. 81. 243S-255S
  • Kroon, PA, Clifford, MN, Crozier, A, Day, AJ, Donovan, JL, Manach, C. (2004). How should we assess the effects of exposure to dietary polyphenols in vitro?. Am J Clin Nutr.. 80. 15-21
  • Perez-Vizcaino, F, Ibarra, M, Cogolludo, AL, Duarte, J, Zaragoza-Arnaez, F, Moreno, L. (2002). Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J Pharmacol Exp Ther.. 302. 66-72
  • Lodi, F, Jimenez, R, Moreno, L, Kroon, PA, Needs, PW, Hughes, DA. (2009). Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 204. 34-39
  • Bieger, J, Cermak, R, Blank, R, de Boer, VC, Hollman, PC, Kamphues, J. (2008). Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutr.. 138. 1417-1420
  • O'Leary, KA, Day, AJ, Needs, PW, Sly, WS, O'Brien, NM, Williamson, G. (2001). Flavonoid glucuronides are substrates for human liver beta-glucuronidase. FEBS Lett.. 503. 103-106
  • Shimoi, K, Saka, N, Nozawa, R, Sato, M, Amano, I, Nakayama, T. (2001). Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos.. 29. 1521-1524
  • Lee-Hilz, YY, Stolaki, M, van Berkel, WJ, Aarts, JM, Rietjens, IM. (2008). Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation. Food Chem Toxicol.. 46. 2128-2134
  • Kawai, Y, Nishikawa, T, Shiba, Y, Saito, S, Murota, K, Shibata, N. (2008). Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem.. 283. 9424-9434
  • Terao, J, Murota, K, Kawai, Y. (2011). Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct.. 2. 11-17
  • Menendez, C, Dueñas, M, Galindo, P, Gonzalez-Manzano, S, Jimenez, R, Moreno, L. (2011). Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed?. Mol Nutr Food Res.. 55. 1780-1790
  • Jimenez, R, Lopez-Sepulveda, R, Romero, M, Toral, M, Cogolludo, A, Perez-Vizcaino, F. (2015). Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct.. 6. 409-414
  • Galindo, P, Rodriguez-Gómez, I, González-Manzano, S, Dueñas, M, Jiménez, R, Menéndez, C. (2012). Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One. 7.
  • van Duynhoven, J, Vaughan, EE, Jacobs, DM, Kemperman, RA, van Velzen, EJ, Gross, G. (2011). Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 108. 4531-4538
  • Boesch-Saadatmandi, C, Niering, J, Minihane, AM, Wiswedel, I, Gardeman, A, Wolffram, S. (2010). Impact of apolipoprotein E genotype and dietary quercetin on paraoxonase 1 status in apoE3 and apoE4 transgenic mice. Atherosclerosis. 211. 110-113
  • Bartholome, R, Haenen, G, Hollman, CH, Bast, A, Dagnelie, PC, Roos, D. (2010). Deconjugation kinetics of glucuronidated phase II flavonoid metabolites by beta-glucuronidase from neutrophils. Drug Metab Pharmacokinet.. 25. 379-387