Optimización de percetrones multicapa mediante algoritmos evolutivos

  1. Castillo Valdivieso, Pedro Ángel
Dirigida per:
  1. Juan Julián Merelo Guervós Director
  2. Alberto Prieto Espinosa Director

Universitat de defensa: Universidad de Granada

Fecha de defensa: 27 de de juny de 2000

Tribunal:
  1. Juan Manuel Sánchez Pérez President/a
  2. Julio Ortega Lopera Secretari
  3. Federico Morán Abad Vocal
  4. Pedro Isasi Viñuela Vocal
  5. Armando Blanco Morón Vocal

Tipus: Tesi

Teseo: 75456 DIALNET

Resum

En esta Tesis se desarrolla un nuevo método, llamado G-Prop, para entrenar perceptrones multicapa, basado en un algoritmo evolutivo y propagación rápida ("quick-propagation"), El método realiza automáticamente la tarea de establecer los valores para los parámetros del percetrón mlulticapa, evitando buscar dichos valores de forma manual. Se introduce el concepto de "Objeto Evolutivo", conel que se pueden construir sistemas que engloban a todos los paradigmas de la computación evolutiva. Posteriromente se realiza una revisión de los diferentes enfoques basados en algoritmos evolutivos que tratan de diseñar redes neuronales artificiales. Por último se comprueba la efectividad el método propuesto aplicándolo a diversos problemas tanto de clasificación de patrones como de aproximación funcional, con los que se demuestra su capacidad para determinar la arquitectura de perceptrones multicapa con bajas tasas de error en reconocimiento o aproximación.