Definición y estudio de parámetros estadísticos basados en medidas e integrales difusas
- Reche Lorite, Fernando
- Manuel Jorge Bolaños Carmona Director
Universidad de defensa: Universidad de Almería
Fecha de defensa: 07 de junio de 2002
- Pedro Ángel Gil Álvarez Presidente/a
- María Angeles Gil Alvarez Vocal
- Serafín Moral Callejón Vocal
- Antonio Salmerón Cerdán Vocal
Tipo: Tesis
Resumen
En esta tesis se hace un estudio en profundidad de las medidas e integrales difusas y se utilizan estas herramientas para la definición de diversos parámetros estadísticos con el objetivo de extender las ideas propuestas en el ambiente clásico, es decir con respecto a medidas aditivas, a un ambiente no aditivo ya que las medidas difusas son aquellas cuya única restricción es la de la monotonía frente a la inclusión de conjuntos, Así pues en el primer capítulo se realiza un estudio exhaustivo de las medidas difusas desde el punto de vista técnico, así como de sus diferentes representaciones (representación de Möbius, índices de interacción y funciones de probabilidad asociada) para finalmente, realizar un estudio de diferentes tipos de medidas particulares. Posteriormente se indaga en la interpretación semántica de las medidas difusas y se propone una nueva interpretación que denominamos interpretación operativa basada en la asignación de recursos. Después se realiza un estudio pormenorizado de diferentes integrales adecuadas para medidas no aditivas, tales mo la Integral de Choquet, la Integral de Sugeno, la Integral Difusa Generalizada propuesta por Imaoka y la W-Integral propuesta por Wang. Posteriormente se establecen procedimientos para el cálculo de una medida difusa producto a partir de dos medidas marginales, estableciéndose algunos conceptos de independencia, composición y marginalización. Finalmente se definen y se estudian diferentes parámetros estadísticos tales como la Esperanza Monótona, la Varianza Monótona, la Esperanza Común, el Coeficiente de Concordancia, etc....