Dispersion vs diffusion in transport partial differential equations
- Oscar Sánchez Romero Zuzendaria
- Juan Soler Vizcaíno Zuzendaria
Defentsa unibertsitatea: Universidad de Granada
Fecha de defensa: 2010(e)ko martxoa-(a)k 26
- Vicent Caselles Costa Presidentea
- Simone Carmelo Calogero Idazkaria
- José Manuel Mazón Ruiz Kidea
- François Golse Kidea
- Pierre-Emmanuel Jabin Kidea
Mota: Tesia
Laburpena
El contenido de esta tesis está dedicado al estudio cualitativo de las soluciones de algunas ecuaciones en derivadas parciales, Las citadas ecuaciones surgen en el estudio de problemas concretos de las áreas de Astrofísica y Biología. Las cuestiones tratadas incluyen la existencia, unicidad, comportamiento a tiempo largo y propiedades de las soluciones estacionarias de una serie de descripciones que están directa o indirectamente relacionadas con la teoriá cinética. Los contenidos de la tesis se estructuran en torno a tres grandes bloques: 1) Aplicaciones de las ecuaciones cinéticas no colisionales al estudio de sistemas gravitatorios de muchas partículas. Estudio de la dinámica en el sistema de Vlasov-Poisson y de las propiedades de las soluciones estacionarias de dos modelos cinéticos relativistas: los sistemas de Nordström-Vlasov y Einstein-Vlasov. Aplicación de las soluciones estacionarias del sistema de Vlasov-Poisson al modelado de halos de materia oscura. 2) Dinámica de poblaciones. Planteamiento de modelos cinéticos que incorporen efectos de coagulación. Comportamiento a tiempo largo. 3) Mecanismos de difusión no estandar y limitación de flujo. Aplicaciones en Astrofísica (como alternativa a la descripción de Fokker-Planck) y en Biología (planteamiento y estudio de un modelo de flujo limitado para el transporte de morfógenos en el embrión).