Modelos hidrodinámicos y de transporte de sedimentos

  1. Losada, Iñigo J.
  2. Medina, Raúl
  3. Losada, Miguel Ángel
  4. Vidal, César
Zeitschrift:
Ingeniería del agua

ISSN: 1134-2196

Datum der Publikation: 1995

Ausgabe: 2

Nummer: 5

Seiten: 99-108

Art: Artikel

DOI: 10.4995/IA.1995.2667 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Ingeniería del agua

Objetivos de desarrollo sostenible

Zusammenfassung

Uno de los fines más importantes de la Ingeniería de Costas es la predicción de la evolución de la línea de costa con o sin la presencia de estructuras costeras. Sin embargo, la construcción de un modelo de predicción semejante precisa del conocimiento de la interacción entre el oleaje y la batimetría, así como de los mecanismos que inducen el transporte de sedimentos fuera y en el interior de la zona de rompientes. El modelo ideal debería estar constituido por diversos elementos.

Bibliographische Referenzen

  • Bakker, W.T., 1968. The Dynamics of a Coast with a Groyne System. Proc. 11th Intl. Coastal Engineering Conference, ASCE. pp. 429-517. https://doi.org/10.9753/icce.v11.31
  • Basco, D.R., 1983. Surfzone Currents. Coastal Engineering, ELSEVIER, 7, pp. 331-357. https://doi.org/10.1016/0378-3839(83)90003-0
  • Battjes, J.A., Janssen, J.P.F.M., 1978. Energy Loss and Set-up due to Breaking of Random Waves. Proc. 16th Intl. Coastal Engineering Conference, ASCE. https://doi.org/10.9753/icce.v16.32
  • Berkhoff, J.C.W., 1972. Computation of Combined Refraction-diffraction. Proc. 13th Intl. Coastal Engineering Conference, ASCE, Vancouver, pp. 471-490. https://doi.org/10.9753/icce.v13.23
  • Berkhoff, J.C.W., Booij, N.C., Radder, A.C., 1982. Verification of Numerical Wave Propagation Models for simple Harmonic Linear Water Waves. Coastal Engineering Conference, ELSEVIER, 6, pp. 255-279. https://doi.org/10.1016/0378-3839(82)90022-9
  • Bettess, P., Zienkiewicz, O.C., 1977. Diffraction and Refraction of Surface Waves Using Finite and Infinite Elements. Intl. Journal Num. Methods in Engineering, 2, pp. 1221-1290. https://doi.org/10.1002/nme.1620110808
  • Briand, M.H.G., Kamphuis, J.W., 1990. A Micro Computer based quasi 3-D Sediment Transport Model. Proc. 22th Intl. Coastal Engineering Conference, ASCE. pp. 2159-2172.
  • Daily, W.R., Dean, R.G., Dalrymple, R.A., 1985. Wave Height Variations Across Beaches of Arbitrary Profile. J. Geophysical Research, 90, C6, pp. 11917-11927. https://doi.org/10.1029/JC090iC06p11917
  • Dalrymple, R.A., 1988. Model for Refraction of Water Waves. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 114, 4, pp. 423-435. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:4(423)
  • Dalrymple, R.A., 1991. REFRACT: A Refraction Program for Water Waves. Center for Applied Coatal Research. Technical Report, 91-09, University of Delaware.
  • Dean, R.G., Dalrymple, R.A., 1984.Water Wave Mechanics for Engineers and Scientists, Prentice-Hall.
  • de Vriend, H.J., 1987. Two- and three-dimensional mathematical modelling of coastal morphology. Delft Hydraulics Communications, No. 377.
  • de Vriend, H.J., 1992. Mathematical Modelling of 3D coastal Morphology. Design and Reliability of Coastal Structures, Short Course ICCE’92. pp. 259-285.
  • de Vriend, H.J., Ribberink, J.S., 1988 Proc. 21th Intl. Coastal Engineering Conference, ASCE. pp. 1689-1703.
  • Ebersole, B.A., 1985. Refraction-Diffraction Model for Linear Water Waves. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 111, pp. 939-953. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:6(939)
  • Freilich, M.H., Guza, R.T., 1984. Nonlinear Effects on Shoaling Surface Gravity Waves. Trans. Royal Society London, A, 31, pp. 1-41. https://doi.org/10.1098/rsta.1984.0019
  • Freilich, M.H., Guza, R.T., Elgar, S.L., 1990. Observations of Nonlinear Effects in Directional Spectra of Shoaling Gravity Waves. J. Geophysical Research, 95, C6, pp. 9645-9656. https://doi.org/10.1029/JC095iC06p09645
  • García, V., 1994. Propagación del Oleaje: Aproximación parabólica de la Ecuación para Pendientes Suaves. Tesina de Especialidad. E.T.S.I.C.C.Y.P. Universidad Pol. de Cataluña. 122 pp.
  • G.I.O.C. U.C., 199. Manual del Modelo MSP. E.T.S.I.C.C.C.Y.P. Universidad de Cantabria. 250 pp.
  • G.I.O.C. U.C., 199. Manual del Modelo de Corrientes en Playas (COPLA). E.T.S.I.C.C.C.Y.P. Universidad de Cantabria. 50 pp.
  • Grassa, J.M., 1992. Modelos parabólicos de Propagación de Oleaje. Cuadernos de Investigación. CEDEX. MOPT.66 pp.
  • Holthuijsen, L, Booij, N., 1986. Grid Model for Shallow Water Waves. Proc. 20th Intl. Coastal Eng. Conference, ASCE, Taipei, pp. 247-260. https://doi.org/10.9753/icce.v20.20
  • Houston, J.R., 1981. Combined Refraction-Diffraction of Short Waves Using the Finite Element Method. Applied Ocean Research, 3, pp. 163-170. https://doi.org/10.1016/0141-1187(81)90058-4
  • Horikawa, K, Kuo, C.T., 1966. A Study of Wave Transformation Inside Surf Zone. Proc. 10th Intl. Coastal Engineering Conference, ASCE. https://doi.org/10.9753/icce.v10.14
  • Kamphuis, J.W., 1991a. Alongshore Sediment Transport Rate. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 117, pp. 624-640. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:6(624)
  • Katapodi, I., Ribberink, K., 1990. A Quasi-3D Model for suspended Sediment Transport by Currents and Waves. Proc. 22th Intl. Coastal Engineering Conference, ASCE. pp. 2131-2144.
  • Kirby, J.T., 1986. Rational Approximations in thc Parabolic Equation Method for Water Waves. Coastal Engineering, ELSEVIER, 10, pp. 355-378. https://doi.org/10.1016/0378-3839(86)90021-9
  • Kirby, J.T., Dalrymple, R.A., 1983. A Parabolic Equation for the Combinad Refraction-Diffraction of Stokes Waves by mildly varying Topography. J. of Fluid Mechanics, 136, pp. 453-466. https://doi.org/10.1017/S0022112083002232
  • Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O., Horikawa, K., 1982. Field Experiments on longshore Sand Transport in the Surf Zone. Proc. 18 th Intl. Coastal Engineering Conference, ASCE. pp. 969-988. https://doi.org/10.9753/icce.v18.61
  • Larson, M., Hanson, H., Kraus, N.C., 1987. Analytical Solutions of the one-line Model of Shoreline Change. CERC Report 87-15. U.S. Corps of Engineers. Vicksburg. 72 pp.
  • Le Méhaute, B., Soldate, M., 1978. Mathematical Modelling of Shoreline Evolution. Proc. 16 th Intl. Coastal Engineering Conference, ASCE. pp. 1163-1179. https://doi.org/10.9753/icce.v16.67
  • Le Méhaute, B., Wang, J.D., 1982. Wave Spectrum Changes on Sloped Beach. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 108, pp. 33-47.
  • Liu, P.L.-F., Yoon, S.B., Kirby, J.T., 1985. Nonlinear Refraction-Diffraction of Waves in Shallow Water. J. Fluid Mechanics, 153, pp. 184-201. https://doi.org/10.1017/S0022112085001203
  • Munk, W.H., Arthur, R.S., 1952. Wave Intensity along a Refracted Ray in Gravity Waves. National Br. Standards Circ., 521. Washington, D.C.
  • Noda, E.K., 1974. Wave-induced Nearshore Circulation. J. Geophysical Research, 79, 27, pp. 4097-4106. https://doi.org/10.1029/JC079i027p04097
  • Penney, W.G., Price, A.T., 1952. The Diffraction Theory of Sea Waves and the Shelter Afforded by Breakwaters. Philos. Trans. Roy. Soe., A, 224(882), pp. 236-253. https://doi.org/10.1098/rsta.1952.0003
  • Peregrine, D.H., 1967. Long Waves on a Beach. J. of Fluid Mechanics, 27, pp. 815-827. https://doi.org/10.1017/S0022112067002605
  • Perlin, M., Dean, R.G., 1983. An efficient numerical Algorithm for Wave Refraction/ShoalingProblems. Proc. Coastal Structures, 83, ASCE, Arlington, pp. 988-1010.
  • Perlin, M., Dean, R.G., 1985. 3-D Model of bathymetric Response to Structures. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 111, 2, pp. 153-170. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(153)
  • Radder, A.C., 1979. On the Parabolic Equation Method for Water Wave Propagation. J. of Fluid Mechanics, 95, pp. 159-176. https://doi.org/10.1017/S0022112079001397
  • Rivero, F., Rodriguez, M., Sánchez-Arcilla, A., 1993. Propagación del Oleaje sobre Fondos variables en Presencia de Corrientes. II Jornadas Españolas de Ingeniería de Costas, pp. 187-204.
  • Sakai, T. Koseki, M., Iwagaki, Y., 1983. Irregular Wave Diffraction due to Current. J. Hydraulic Engineering, ASCE, 109, 9, pp. 1203-1215. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:9(1203)
  • Sánchez-Arcilla, A., Collado, F., Lemos, C., Rivero, F., 1990. Another Quasi-3D Model for Surfzone Flows. Proc. 22 th Intl. Coastal Engineering Conference, ASCE. pp. 316-329.
  • Stive, M.J.F., Battjes, J.A., 1984. A Model for Offshore Sediment Transport. Proc. 19th Intl. Coastal Engineering Conference, ASCE. pp. 1420-1436. https://doi.org/10.9753/icce.v19.97
  • Thornton, E.B., Guza, R.T., 1983. Transformation of Wave Height Distribution. J. Geophysical Research, 88, C10, pp. 5925-5938. https://doi.org/10.1029/JC088iC10p05925
  • U.S. Army Corps of Engineers, 1984. Shore Protection Manual Coastal Engineering Research Center, Washington, D.C. 2 Vol.