Sobre subarmonia y diversos tipos de convexidad de ciertas funciones polinomiales a trozos

  1. Serrano Pérez, María del Carmen
Supervised by:
  1. Jerónimo Lorente Pardo Director

Defence university: Universidad de Granada

Year of defence: 1997

Committee:
  1. Mariano Gasca González Chair
  2. Victoriano Ramírez González Secretary
  3. Paolo Constantini Committee member
  4. Jesús Miguel Carnicer Committee member
  5. Francisco Javier Muñoz Delgado Committee member
Department:
  1. MATEMÁTICA APLICADA

Type: Thesis

Teseo: 58953 DIALNET

Abstract

LA MEMORIA DE UNA VISION GENERAL Y UNIFICADA DE LOS RESULTADOS ACERCA DE LAS PROPIEDADES, CONVEXIDAD, CONVEXIDAD AXIAL, CONVEXIDAD POLIEDRICA, ETC PARA POLINOMIOS DE BERSNTEIN Y REDES DE BEZIER, REALIZA UN ESTUDIO PARALELO SOBRE LA SUBARMONIA DE LOS MISMOS. POR OTRA PARTE OBTIENE APORTACIONES PUNTUALES SOBRE DETERMINADOS RESULTADOS EXISTENTES Y EN OCASIONES SE MUESTRA MEDIANTE CONTRAEJEMPLOS QUE NO PUEDEN DARSE DETERMINADAS IMPLICACIONES. SE HACE UN ANALISIS DETALLADO DE DIVERSOS TIPOS DE ELEMENTOS FINITOS DE CLASE 1 Y GRADOS 2 Y 3, OBTENIENDO CARACTERIZACIONES DE LA CONVEXIDAD DE LAS B-REDES ASOCIADAS EN TERMINOS DE LOS B-COEFICIENTES Y DA UNA VISION GEOMETRICA DE LAS CONDICIONES OBTENIDAS. IGUALMENTE SE CARACTERIZAN LAS B-REDES PARA LAS SUPERFICIES GLOBALES ASOCIADAS A LOS ELEMENTOS FINITOS DE HSEIH-CLOUGH-TOCHER, FRAEIJS DE VEUBEKE-SANDER, POWELL-SABIN, POWELL-SABIN MODIFICADO Y SIBSON Y THOMSON.