Análisis e integración de datos espaciales en investigación de recursos geológicos mediante Sistemas de Información Geográfica

  1. Rigol-Sánchez, J.P.
  2. Chica Olmo, Mario
  3. Pardo Igúzquiza, Eulogio
  4. Rodríguez-Galiano, V. F.
  5. Chica-Rivas, Mario
Revista:
Boletín de la Sociedad Geológica Mexicana

ISSN: 1405-3322

Año de publicación: 2011

Tomo: 63

Número: 1

Páginas: 61-70

Tipo: Artículo

DOI: 10.18268/BSGM2011V63N1A5 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Boletín de la Sociedad Geológica Mexicana

Resumen

En la investigación geológica, como es el caso de la exploración de recursos minerales, es frecuente disponer de grandes volúmenes de datos espaciales, referentes a información temática diversa, costosa de obtener, que son adecuadamente tratados y analizados con ayuda de los sistemas de información geográfica (SIG). Se puede decir, que el objetivo final de este análisis de datos es la elaboración de mapas que indiquen las zonas o puntos donde es posible la presencia de un recurso (por ejemplo, mapas de favorabilidad minera). Para ello es necesario elaborar modelos espaciales predictivos que permitan la incorporación y combinación de las variables relevantes relacionadas con el fenómeno estudiado. Estos modelos, elaborados normalmente en entorno SIG, poseen naturaleza numérica diversa, que van desde modelos basados en la combinación de mapas mediante reglas lógicas, aritméticas, estadísticas o probabilísticas, hasta modelos más complejos basados en algoritmos de inteligencia artificial y minería de datos. En este artículo se presenta la aplicación de dos métodos de integración de datos espaciales, el método de suma ponderada multiclase y el de regresión logística múltiple, en un contexto aplicado de investigación de depósitos metálicos en el SE de España. Los modelos han sido implementados mediante SIG y han permitido generar mapas predictivos, por medio del cálculo de un índice de favorabilidad minera (IFM), que ha facilitado la selección de las zonas con mayor potencialidad para albergar depósitos minerales. Los resultados obtenidos indican que el rendimiento de los modelos es similar en muchos de los experimentos, con porcentajes de acierto de depósitos conocidos sólo un poco superiores en los modelos basados en regresión logística. No obstante, el método de suma ponderada multiclase puede ser aceptable en la mayoría de los casos.