Metabolismo energético postprandial y su relación con el síndrome metabólico en pacientes con enfermedad coronaria

  1. Alcalá Díaz, Juan Francisco
Dirigida por:
  1. José López Miranda Director/a
  2. Francisco Javier Delgado Lista Codirector/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 16 de febrero de 2017

Tribunal:
  1. Fernando Civeira Murillo Presidente/a
  2. Mercedes Gil Campos Secretaria
  3. Eelco de Koning Vocal

Tipo: Tesis

Resumen

1. Introducción o motivación de la tesis Aunque el establecimiento de terapias ajustadas a las recientes guías de práctica clínica para el tratamiento de la enfermedad coronaria han disminuido la incidencia de la enfermedad y han mejorado su pronóstico, esta entidad se mantiene como una de las principales causas de mortalidad en los países desarrollados, Por otra parte, esta condición representa también la primera causa de discapacidad en la edad joven y causa un alto impacto en términos de uso de los servicios de salud. La arteriosclerosis, mecanismo patológico subyacente de la enfermedad coronaria, se encuentra ligada a la presencia de varios factores de riesgo cardiovascular, destacando entre ellos como factores clásicos de riesgo la hipertensión, la dislipemia, la diabetes mellitus, el tabaquismo y la inactividad física. De los descritos, los tres primeros se relacionan estrechamente con el tipo de dieta, y su aparición está asociada con la presencia de exceso de peso u obesidad. El llamado síndrome metabólico describe una agrupación de riesgo para la enfermedad cardiovascular y la diabetes mellitus tipo 2 (DM2), incluyendo dislipidemia, intolerancia a la glucosa, hipertensión y obesidad central. Esta entidad está aumentando su prevalencia a proporciones epidémicas en todo el mundo y los mecanismos subyacentes exactos que conducen a esta no son plenamente conocidos. Así mismo, el aumento del índice de masa corporal también se ha asociado con un exceso de riesgo de mortalidad. Sin embargo, evidencias recientes sugieren que no todos los sujetos obesos muestran un agrupamiento de factores de riesgo metabólicos y cardiovasculares y, de igual modo, no todos los sujetos delgados presentan un perfil metabólico libre de enfermedad. Por este motivo, se ha prestado más atención a los diferentes fenotipos metabólicos de la obesidad, sugiriendo que los individuos en la misma categoría de índice de masa corporal pueden presentar una gran heterogeneidad en su control metabólico. Estos efectos metabólicos se hacen más fácilmente evidentes en las situaciones en las que hay un mayor estrés de las vías metabólicas, como es el caso del estado postprandial. Este hecho puede apoyar la idea de que la obesidad es una enfermedad multisistémica en la que puede acontecer una pérdida de flexibilidad en uno o más procesos metabólicos implicados. El estudio de los factores de riesgo no clásicos que influyen en las enfermedades cardíacas, como es el caso de la lipemia postprandial, está recibiendo una gran atención debido a la creciente evidencia que muestra que estos factores son determinantes claros de la incidencia y evolución de la enfermedad. No obstante, existen aún grandes interrogantes en cuestiones relacionadas con los determinantes del metabolismo postprandial. De esta forma, la motivación de nuestra investigación ha sido abordar algunos de estos interrogantes y poder determinar si los riesgos del síndrome metabólico influyen en la lipemia postprandial de los pacientes coronarios, valorar el efecto de la edad sobre ellos y si esta influencia depende del número de criterios presentes. Así mismo, se ha evaluado el concepto de fenotipos de obesidad y su impacto sobre el metabolismo postprandial. En función de lo expuesto previamente, se definen los siguientes objetivos a cumplir: Objetivo principal: - Determinar si los rasgos de síndrome metabólico influyen en la lipemia postprandial de los pacientes coronarios y si esta influencia depende del número de criterios presentes. Objetivos secundarios: - Investigar si el número de criterios del síndrome metabólico puede predecir el grado de respuesta postprandial en pacientes con TG en ayunas normales. - Determinar la contribución exacta de la presencia de síndrome metabólico sobre la lipemia postprandial aumentada asociada a la edad. - Explorar mediante un test de sobrecarga oral grasa el grado de flexibilidad fenotípica de los pacientes de alto riesgo coronario clasificados según su índice de masa corporal y la presencia o ausencia de alteración cardiometabólica. 2. Contenido de la investigación El trabajo desarrollado se ha encuadrado principalmente dentro del estudio CORDIOPREV y se exponen en función de los resultados de tres publicaciones referenciadas en Journal Citation report (JCR). El estudio CORDIOPREV es un estudio prospectivo, abierto, randomizado y controlado que incluye a 1002 pacientes con enfermedad coronaria, asignados a uno de los dos modelos de dieta (dieta mediterránea y baja en grasa) durante un período de siete años de seguimiento. Los pacientes incluidos en este estudio fueron reclutados desde Noviembre de 2009 hasta Febrero de 2012, principalmente en el Hospital Universitario Reina Sofía de Córdoba, además de otros centro hospitalarios de las provincias de Córdoba y Jaén. Como criterios de inclusión, los pacientes fueron elegibles si presentaban una edad mayor de 20 años (aunque menores de 75 años), con diagnóstico de enfermedad coronaria sin eventos clínicos en los últimos seis meses, no presentaban enfermedades graves y se estimaba una esperanza de vida superior a cinco años. Antes de que los participantes fueran asignados a los diferentes modelos dietéticos del estudio CORDIOPREV, y con un periodo de ayuno previo de 12 horas, completaron un test de sobrecarga oral grasa con una comida rica en ácidos grasos monoinsaturados con 0.7 g de grasa por Kg de peso (12%SFA, 10%PUFA, 43%MUFA), y 10% de proteínas y 25% de hidratos de carbono. Se obtuvieron muestras venosas en los tiempos 0, 1, 2, 3 y 4 horas y los pacientes fueron clasificados en función de la presencia o no de síndrome metabólico, el número de criterios presentes. Así mismo, también fueron clasificados en función de diferentes fenotipos de obesidad, definidos en función del índice de masa corporal y la presencia o no de alteraciones cardiometabólicas. La extensión y magnitud del metabolismo postprandial fue analizada en función de estos grupos. 3. Conclusión - En los pacientes con enfermedad coronaria, la lipemia postprandial se relacionó directamente con la presencia de síndrome metabólico. Se encontró una asociación positiva entre el número de criterios de síndrome metabólico y la respuesta de los triglicéridos postprandiales plasmáticos. - Los pacientes metabólicamente sanos mostraron una menor respuesta postprandial de triglicéridos y lipoproteínas ricas en triglicéridos, en comparación con aquellos metabólicamente anormales, con independencia de si eran obesos o no. - El síndrome metabólico interactúa con la edad para determinar la magnitud de la respuesta de la lipemia postprandial. 4. Bibliografía 1. The European health report 2012 : charting the way to well-being: World Health Organization; 2013 [July 31st 2014]. Available from: http://www.euro.who.int/__data/assets/pdf_file/0004/197113/EHR2012-Eng.pdf?ua=1. 2. Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: longitudinal population study. Bmj. 1998;316(7137):1043-7. 3. Lawes CM, Bennett DA, Lewington S, Rodgers A. Blood pressure and coronary heart disease: a review of the evidence. Seminars in vascular medicine. 2002;2(4):355-68. 4. Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA : the journal of the American Medical Association. 2000;284(3):311-8. 5. Prospective Studies C, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083-96. 6. Fox CS, Coady S, Sorlie PD, Levy D, Meigs JB, D'Agostino RB, Sr., et al. Trends in cardiovascular complications of diabetes. JAMA : the journal of the American Medical Association. 2004;292(20):2495-9. 7. Colantonio LD, Bittner V. Managing Residual Risk After Myocardial Infarction Among Individuals with Low Cholesterol Levels. Cardiology clinics. 2015;33(2):299-308. 8. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28-e292. 9. Boren J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131-42. 10. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103(13):1813-8. 11. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459-67. 12. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA : the journal of the American Medical Association. 1992;268(7):877-81. 13. Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. European heart journal. 2010;31(23):2844-53. 14. Akhabue E, Thiboutot J, Cheng JW, Vittorio TJ, Christodoulidis G, Grady KM, et al. New and emerging risk factors for coronary heart disease. The American journal of the medical sciences. 2014;347(2):151-8. 15. Grundy SM. Metabolic syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology. 2008;28(4):629-36. 16. Fernandez-Berges D, Cabrera de Leon A, Sanz H, Elosua R, Guembe MJ, Alzamora M, et al. Metabolic syndrome in Spain: prevalence and coronary risk associated with harmonized definition and WHO proposal. DARIOS study. Rev Esp Cardiol (Engl Ed). 2012;65(3):241-8. 17. Fernandez-Ruiz VE, Paniagua-Urbano JA, Sole-Agusti M, Ruiz-Sanchez A, Gomez-Marin J. [Prevalence of metabolic syndrome and cardiovascular risk in an urban area of Murcia]. Nutricion hospitalaria. 2014;30(5):1077-83. 18. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;56(14):1113-32. 19. Lopez-Miranda J, Perez-Martinez P. It is time to define metabolically obese but normal-weight (MONW) individuals. Clinical endocrinology. 2013;79(3):314-5. 20. van Ommen B, Keijer J, Heil SG, Kaput J. Challenging homeostasis to define biomarkers for nutrition related health. Molecular nutrition & food research. 2009;53(7):795-804. 21. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89(6):2569-75. 22. Fuentes F, Lopez-Miranda J, Perez-Martinez P, Jimenez Y, Marin C, Gomez P, et al. Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men. The British journal of nutrition. 2008;100(1):159-65. 23. Kardinaal AF, van Erk MJ, Dutman AE, Stroeve JH, van de Steeg E, Bijlsma S, et al. Quantifying phenotypic flexibility as the response to a high-fat challenge test in different states of metabolic health. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2015;29(11):4600-13. 24. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA : the journal of the American Medical Association. 2008;300(18):2142-52. 25. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309-16. 26. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118(20):2047-56. 27. Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. Curr Vasc Pharmacol. 2011;9(3):281-6. 28. Lupattelli G, Pasqualini L, Siepi D, Marchesi S, Pirro M, Vaudo G, et al. Increased postprandial lipemia in patients with normolipemic peripheral arterial disease. American heart journal. 2002;143(4):733-8. 29. Klop B, Proctor SD, Mamo JC, Botham KM, Castro Cabezas M. Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. 2012;2012:947417. 30. Lopez-Miranda J, Marin C. Dietary, Physiological, and Genetic Impacts on Postprandial Lipid Metabolism. In: Montmayeur JP, le Coutre J, editors. Fat Detection: Taste, Texture, and Post Ingestive Effects. Frontiers in Neuroscience. Boca Raton (FL)2010. 31. Perez-Martinez P, Ordovas JM, Garcia-Rios A, Delgado-Lista J, Delgado-Casado N, Cruz-Teno C, et al. Consumption of diets with different type of fat influences triacylglycerols-rich lipoproteins particle number and size during the postprandial state. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2011;21(1):39-45. 32. Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Nutrigenetics of the postprandial lipoprotein metabolism: evidences from human intervention studies. Current vascular pharmacology. 2011;9(3):287-91. 33. Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Update on genetics of postprandial lipemia. Atherosclerosis Supplements. 2010;11(1):39-43. 34. American Diabetes A. Postprandial blood glucose. American Diabetes Association. Diabetes care. 2001;24(4):775-8. 35. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220(1):22-33. 36. Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012;1821(5):721-6. 37. Redgrave TG. Formation and metabolism of chylomicrons. International review of physiology. 1983;28:103-30. 38. Nguyen P, Leray V, Diez M, Serisier S, Le Bloc'h J, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl). 2008;92(3):272-83. 39. Olofsson SO, Boren J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. Journal of internal medicine. 2005;258(5):395-410. 40. Chan L, Chang BH, Nakamuta M, Li WH, Smith LC. Apobec-1 and apolipoprotein B mRNA editing. Biochimica et biophysica acta. 1997;1345(1):11-26. 41. Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, et al. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis. 2010;211(1):1-8. 42. Riches FM, Watts GF, Naoumova RP, Kelly JM, Croft KD, Thompson GR. Hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 studied with a stable isotope technique in men with visceral obesity. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 1998;22(5):414-23. 43. Chan DC, Watts GF, Redgrave TG, Mori TA, Barrett PH. Apolipoprotein B-100 kinetics in visceral obesity: associations with plasma apolipoprotein C-III concentration. Metabolism: clinical and experimental. 2002;51(8):1041-6. 44. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441-9. 45. Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and thrombosis : a journal of vascular biology / American Heart Association. 1992;12(11):1336-45. 46. Kolovou GD, Anagnostopoulou KK, Pavlidis AN, Salpea KD, Iraklianou SA, Tsarpalis K, et al. Postprandial lipemia in men with metabolic syndrome, hypertensives and healthy subjects. Lipids Health Dis. 2005;4:21. 47. Kolovou GD, Anagnostopoulou KK, Pavlidis AN, Salpea KD, Hoursalas IS, Manolis A, et al. Postprandial lipaemia in menopausal women with metabolic syndrome. Maturitas. 2006;55(1):19-26. 48. Miller M, Zhan M, Georgopoulos A. Effect of desirable fasting triglycerides on the postprandial response to dietary fat. J Investig Med. 2003;51(1):50-5. 49. Ntyintyane LM, Panz VR, Raal FJ, Gill GV. Postprandial lipaemia, metabolic syndrome and LDL particle size in urbanised South African blacks with and without coronary artery disease. QJM. 2008;101(2):111-9. 50. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98(3):458-73. 51. Klop B, Proctor SD, Mamo JC, Botham KM, Castro Cabezas M. Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. International journal of vascular medicine. 2012;2012:947417. 52. Lairon D, Defoort C. Effects of nutrients on postprandial lipemia. Curr Vasc Pharmacol. 2011;9(3):309-12. 53. Cohen JC, Noakes TD, Benade AJ. Serum triglyceride responses to fatty meals: effects of meal fat content. The American journal of clinical nutrition. 1988;47(5):825-7. 54. Dubois C, Armand M, Azais-Braesco V, Portugal H, Pauli AM, Bernard PM, et al. Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. The American journal of clinical nutrition. 1994;60(3):374-82. 55. Murphy MC, Isherwood SG, Sethi S, Gould BJ, Wright JW, Knapper JA, et al. Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? European journal of clinical nutrition. 1995;49(8):578-88. 56. Dubois C, Beaumier G, Juhel C, Armand M, Portugal H, Pauli AM, et al. Effects of graded amounts (0-50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. The American journal of clinical nutrition. 1998;67(1):31-8. 57. Jackson KG, Robertson MD, Fielding BA, Frayn KN, Williams CM. Olive oil increases the number of triacylglycerol-rich chylomicron particles compared with other oils: an effect retained when a second standard meal is fed. The American journal of clinical nutrition. 2002;76(5):942-9. 58. Sharrett AR, Heiss G, Chambless LE, Boerwinkle E, Coady SA, Folsom AR, et al. Metabolic and lifestyle determinants of postprandial lipemia differ from those of fasting triglycerides: The Atherosclerosis Risk In Communities (ARIC) study. Arteriosclerosis, thrombosis, and vascular biology. 2001;21(2):275-81. 59. Williams CM, Moore F, Morgan L, Wright J. Effects of n-3 fatty acids on postprandial triacylglycerol and hormone concentrations in normal subjects. The British journal of nutrition. 1992;68(3):655-66. 60. Harris WS, Muzio F. Fish oil reduces postprandial triglyceride concentrations without accelerating lipid-emulsion removal rates. The American journal of clinical nutrition. 1993;58(1):68-74. 61. Kelley DS, Siegel D, Vemuri M, Mackey BE. Docosahexaenoic acid supplementation improves fasting and postprandial lipid profiles in hypertriglyceridemic men. The American journal of clinical nutrition. 2007;86(2):324-33. 62. Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. Journal of lipid research. 2003;44(3):455-63. 63. Harris WS, Lu G, Rambjor GS, Walen AI, Ontko JA, Cheng Q, et al. Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipases. The American journal of clinical nutrition. 1997;66(2):254-60. 64. Lozano A, Perez-Martinez P, Delgado-Lista J, Marin C, Cortes B, Rodriguez-Cantalejo F, et al. Body mass interacts with fat quality to determine the postprandial lipoprotein response in healthy young adults. Nutr Metab Cardiovasc Dis. 2012;22(4):355-61. 65. Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. The Journal of clinical investigation. 1999;104(8):1087-96. 66. Roche HM. Dietary carbohydrates and triacylglycerol metabolism. The Proceedings of the Nutrition Society. 1999;58(1):201-7. 67. Grant KI, Marais MP, Dhansay MA. Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance. The American journal of clinical nutrition. 1994;59(4):853-60. 68. Cohen JC, Berger GM. Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. Journal of lipid research. 1990;31(4):597-602. 69. Harbis A, Perdreau S, Vincent-Baudry S, Charbonnier M, Bernard MC, Raccah D, et al. Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. The American journal of clinical nutrition. 2004;80(4):896-902. 70. Mortensen LS, Hartvigsen ML, Brader LJ, Astrup A, Schrezenmeir J, Holst JJ, et al. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. The American journal of clinical nutrition. 2009;90(1):41-8. 71. Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. The Journal of nutritional biochemistry. 2007;18(4):217-27. 72. Khossousi A, Binns CW, Dhaliwal SS, Pal S. The acute effects of psyllium on postprandial lipaemia and thermogenesis in overweight and obese men. The British journal of nutrition. 2008;99(5):1068-75. 73. Basu A, Lucas EA. Mechanisms and effects of green tea on cardiovascular health. Nutrition reviews. 2007;65(8 Pt 1):361-75. 74. Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. Journal of the American College of Nutrition. 2010;29(1):46-54. 75. Annuzzi G, Bozzetto L, Costabile G, Giacco R, Mangione A, Anniballi G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. The American journal of clinical nutrition. 2014;99(3):463-71. 76. Petitt DS, Cureton KJ. Effects of prior exercise on postprandial lipemia: a quantitative review. Metabolism: clinical and experimental. 2003;52(4):418-24. 77. Zhang JQ, Smith B, Langdon MM, Messimer HL, Sun GY, Cox RH, et al. Changes in LPLa and reverse cholesterol transport variables during 24-h postexercise period. American journal of physiology Endocrinology and metabolism. 2002;283(2):E267-74. 78. Murphy MH, Blair SN, Murtagh EM. Accumulated versus continuous exercise for health benefit: a review of empirical studies. Sports medicine. 2009;39(1):29-43. 79. Ghafouri K, Cooney J, Bedford DK, Wilson J, Caslake MJ, Gill JM. Moderate Exercise Increases Affinity of Large Very Low-Density Lipoproteins for Hydrolysis by Lipoprotein Lipase. The Journal of clinical endocrinology and metabolism. 2015;100(6):2205-13. 80. Tsetsonis NV, Hardman AE. Effects of low and moderate intensity treadmill walking on postprandial lipaemia in healthy young adults. European journal of applied physiology and occupational physiology. 1996;73(5):419-26. 81. Smith BK, Sun GY, Donahue OM, Thomas TR. Exercise plus n-3 fatty acids: additive effect on postprandial lipemia. Metabolism: clinical and experimental. 2004;53(10):1365-71. 82. Fernández JM, Rosado-Álvarez D, Da Silva Grigoletto ME, Rangel-Zúñiga OA, Landaeta-Díaz LL, Caballero-Villarraso J, et al. Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. 2012;123(6):361-73. 83. Torres do Rego A, Klop B, Birnie E, Elte JW, Ramos VC, Walther LA, et al. Diurnal triglyceridemia in relation to alcohol intake in men. Nutrients. 2013;5(12):5114-26. 84. Naissides M, Mamo JC, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177(2):401-8. 85. Peluso I, Manafikhi H, Reggi R, Palmery M. Effects of red wine on postprandial stress: potential implication in non-alcoholic fatty liver disease development. European journal of nutrition. 2015;54(4):497-507. 86. Mudrakova E, Poledne R, Kovar J. Postprandial triglyceridemia after single dose of alcohol in healthy young men. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2013;23(3):183-8. 87. Mero N, Syvanne M, Eliasson B, Smith U, Taskinen MR. Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke. Arteriosclerosis, thrombosis, and vascular biology. 1997;17(10):2096-102. 88. Kabagambe EK, Ordovas JM, Tsai MY, Borecki IB, Hopkins PN, Glasser SP, et al. Smoking, inflammatory patterns and postprandial hypertriglyceridemia. Atherosclerosis. 2009;203(2):633-9. 89. Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ. Postprandial plasma lipoprotein changes in human subjects of different ages. Journal of lipid research. 1988;29(4):469-79. 90. Krasinski SD, Cohn JS, Schaefer EJ, Russell RM. Postprandial plasma retinyl ester response is greater in older subjects compared with younger subjects. Evidence for delayed plasma clearance of intestinal lipoproteins. The Journal of clinical investigation. 1990;85(3):883-92. 91. Jackson KG, Knapper-Francis JM, Morgan LM, Webb DH, Zampelas A, Williams CM. Exaggerated postprandial lipaemia and lower post-heparin lipoprotein lipase activity in middle-aged men. Clinical science. 2003;105(4):457-66. 92. Scuteri A, Laurent S, Cucca F, Cockcroft J, Cunha PG, Manas LR, et al. Metabolic syndrome across Europe: different clusters of risk factors. European journal of preventive cardiology. 2015;22(4):486-91. 93. Couillard C, Bergeron N, Prud'homme D, Bergeron J, Tremblay A, Bouchard C, et al. Gender difference in postprandial lipemia : importance of visceral adipose tissue accumulation. Arteriosclerosis, thrombosis, and vascular biology. 1999;19(10):2448-55. 94. Halkes CJ, Castro Cabezas M, van Wijk JP, Erkelens DW. Gender differences in diurnal triglyceridemia in lean and overweight subjects. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2001;25(12):1767-74. 95. Kolovou GD, Anagnostopoulou KK, Pavlidis AN, Salpea KD, Iraklianou SA, Hoursalas IS, et al. Metabolic syndrome and gender differences in postprandial lipaemia. European journal of cardiovascular prevention and rehabilitation : official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. 2006;13(4):661-4. 96. Westerveld HE. Estrogens and postprandial lipid metabolism. Atherosclerosis. 1998;141 Suppl 1:S105-7. 97. Zaman GS, Rahman S, Rahman J. Postprandial lipemia in pre- and postmenopausal women. Journal of natural science, biology, and medicine. 2012;3(1):65-70. 98. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. Journal of clinical lipidology. 2013;7(4):304-83. 99. Lewis GF, O'Meara NM, Soltys PA, Blackman JD, Iverius PH, Druetzler AF, et al. Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. The Journal of clinical endocrinology and metabolism. 1990;71(4):1041-50. 100. Oliveira MR, Maranhao RC. Relationships in women between body mass index and the intravascular metabolism of chylomicron-like emulsions. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2004;28(11):1471-8. 101. Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Solivera J, Yubero-Serrano EM, Fuentes F, et al. Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism. The Journal of clinical endocrinology and metabolism. 2011;96(5):E816-20. 102. van Wijk JP, Halkes CJ, Erkelens DW, Castro Cabezas M. Fasting and daylong triglycerides in obesity with and without type 2 diabetes. Metabolism: clinical and experimental. 2003;52(8):1043-9. 103. Castro Cabezas M, Erkelens DW, Kock LA, De Bruin TW. Postprandial apolipoprotein B100 and B48 metabolism in familial combined hyperlipidaemia before and after reduction of fasting plasma triglycerides. European journal of clinical investigation. 1994;24(10):669-78. 104. Alipour A, Elte JW, van Zaanen HC, Rietveld AP, Cabezas MC. Postprandial inflammation and endothelial dysfuction. Biochemical Society transactions. 2007;35(Pt 3):466-9. 105. Haffner SM. Lipoprotein disorders associated with type 2 diabetes mellitus and insulin resistance. The American journal of cardiology. 2002;90(8A):55i-61i. 106. Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation. 2002;106(3):286-8. 107. Harbis A, Defoort C, Narbonne H, Juhel C, Senft M, Latge C, et al. Acute hyperinsulinism modulates plasma apolipoprotein B-48 triglyceride-rich lipoproteins in healthy subjects during the postprandial period. Diabetes. 2001;50(2):462-9. 108. Karpe F. Postprandial lipoprotein metabolism and atherosclerosis. Journal of internal medicine. 1999;246(4):341-55. 109. Leon-Acuna A, Alcala-Diaz JF, Delgado-Lista J, Torres-Pena JD, Lopez-Moreno J, Camargo A, et al. Hepatic insulin resistance both in prediabetic and diabetic patients determines postprandial lipoprotein metabolism: from the CORDIOPREV study. Cardiovascular diabetology. 2016;15:68. 110. Charlesworth JA, Kriketos AD, Jones JE, Erlich JH, Campbell LV, Peake PW. Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism: clinical and experimental. 2005;54(6):821-8. 111. Saland JM, Satlin LM, Zalsos-Johnson J, Cremers S, Ginsberg HN. Impaired postprandial lipemic response in chronic kidney disease. Kidney international. 2016;90(1):172-80. 112. Eleftheriadou I, Grigoropoulou P, Katsilambros N, Tentolouris N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev. 2008;4(4):340-56. 113. Tentolouris N, Eleftheriadou I, Katsilambros N. The effects of medications used for the management of dyslipidemia on postprandial lipemia. Curr Med Chem. 2009;16(2):203-17. 114. Rosenblit PD. Common medications used by patients with type 2 diabetes mellitus: what are their effects on the lipid profile? Cardiovascular diabetology. 2016;15:95. 115. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088-93. 116. Kolovou GD, Kostakou PM, Anagnostopoulou KK, Cokkinos DV. Therapeutic effects of fibrates in postprandial lipemia. American journal of cardiovascular drugs : drugs, devices, and other interventions. 2008;8(4):243-55. 117. Naples M, Baker C, Lino M, Iqbal J, Hussain MM, Adeli K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. American journal of physiology Gastrointestinal and liver physiology. 2012;302(9):G1043-52. 118. Miyoshi T, Noda Y, Ohno Y, Sugiyama H, Oe H, Nakamura K, et al. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals - a randomized cross-over trial. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2014;68(8):1071-7. 119. Schmoelzer I, de Campo A, Pressl H, Stelzl H, Dittrich P, Oettl K, et al. Biphasic insulin aspart compared to biphasic human insulin reduces postprandial hyperlipidemia in patients with Type 2 diabetes. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2005;113(3):176-81. 120. Ceriello A, Del Prato S, Bue-Valleskey J, Beattie S, Gates J, de la Pena A, et al. Premeal insulin lispro plus bedtime NPH or twice-daily NPH in patients with type 2 diabetes: acute postprandial and chronic effects on glycemic control and cardiovascular risk factors. Journal of diabetes and its complications. 2007;21(1):20-7. 121. Zhang H, Bu P, Xie YH, Luo J, Lei MX, Mo ZH, et al. Effect of repaglinide and gliclazide on glycaemic control, early-phase insulin secretion and lipid profiles in. Chinese medical journal. 2011;124(2):172-6. 122. van Wijk JP, Hoepelman AI, de Koning EJ, Dallinga-Thie G, Rabelink TJ, Cabezas MC. Differential effects of rosiglitazone and metformin on postprandial lipemia in patients with HIV-lipodystrophy. Arteriosclerosis, thrombosis, and vascular biology. 2011;31(1):228-33. 123. Rizzo M, Rizvi AA, Spinas GA, Rini GB, Berneis K. Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors. Expert opinion on investigational drugs. 2009;18(10):1495-503. 124. Voukali M, Kastrinelli I, Stragalinou S, Tasiopoulou D, Paraskevopoulou P, Katsilambros N, et al. Study of postprandial lipaemia in type 2 diabetes mellitus: exenatide versus liraglutide. Journal of diabetes research. 2014;2014:304032. 125. Delgado-Lista J, Perez-Jimenez F, Ruano J, Perez-Martinez P, Fuentes F, Criado-Garcia J, et al. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. 2010;51(1):63-73. 126. Phillips CM. Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients. 2013;5(1):32-57. 127. Tanaka T, Delgado-Lista J, Lopez-Miranda J, Perez-Jimenez F, Marin C, Perez-Martinez P, et al. Scavenger receptor class B type I (SCARB1) c.1119C>T polymorphism affects postprandial triglyceride metabolism in men. The Journal of nutrition. 2007;137(3):578-82. 128. Delgado-Lista J, Perez-Martinez P, Perez-Jimenez F, Garcia-Rios A, Fuentes F, Marin C, et al. ABCA1 gene variants regulate postprandial lipid metabolism in healthy men. 2010;30(5):1051-7. 129. Garcia-Rios A, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J, Perez-Jimenez F. Nutrigenetics of the lipoprotein metabolism. Molecular nutrition & food research. 2012;56(1):171-83. 130. Perez-Martinez P, Perez-Caballero AI, Garcia-Rios A, Yubero-Serrano EM, Camargo A, Gomez-Luna MJ, et al. Effects of rs7903146 variation in the Tcf7l2 gene in the lipid metabolism of three different populations. PloS one. 2012;7(8):e43390. 131. Perez-Martinez P, Phillips CM, Delgado-Lista J, Garcia-Rios A, Lopez-Miranda J, Perez-Jimenez F. Nutrigenetics, metabolic syndrome risk and personalized nutrition. Current vascular pharmacology. 2013;11(6):946-53. 132. Gomez-Delgado F, Alcala-Diaz JF, Garcia-Rios A, Delgado-Lista J, Ortiz-Morales A, Rangel-Zuniga O, et al. Polymorphism at the TNF-alpha gene interacts with Mediterranean diet to influence triglyceride metabolism and inflammation status in metabolic syndrome patients: From the CORDIOPREV clinical trial. Molecular nutrition & food research. 2014;58(7):1519-27. 133. Emamian M, Avan A, Pasdar A, Mirhafez SR, Sadeghzadeh M, Moghadam MS, et al. The lipoprotein lipase S447X and cholesteryl ester transfer protein rs5882 polymorphisms and their relationship with lipid profile in human serum of obese individuals. Gene. 2015;558(2):195-9. 134. Mirhafez SR, Avan A, Pasdar A, Khatamianfar S, Hosseinzadeh L, Ganjali S, et al. Zinc Finger 259 Gene Polymorphism rs964184 is Associated with Serum Triglyceride Levels and Metabolic Syndrome. International journal of molecular and cellular medicine. 2016;5(1):8-18. 135. Irvin MR, Zhi D, Aslibekyan S, Claas SA, Absher DM, Ordovas JM, et al. Genomics of post-prandial lipidomic phenotypes in the Genetics of Lipid lowering Drugs and Diet Network (GOLDN) study. PloS one. 2014;9(6):e99509. 136. Zilversmit DB. Atherogenesis: a postprandial phenomenon. 1979;60(3):473-85. 137. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4A):7B-12B. 138. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316(7134):823-8. 139. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123(20):2292-333. 140. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. 2008;118(20):2047-56. 141. Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. 2011;9(3):281-6. 142. Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. Journal of the American College of Cardiology. 2014;64(23):2525-40. 143. Speidel MT, Booyse FM, Abrams A, Moore MA, Chung BH. Lipolyzed hypertriglyceridemic serum and triglyceride-rich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells. High density lipoproteins inhibit this cytotoxicity. Thrombosis research. 1990;58(3):251-64. 144. Doi H, Kugiyama K, Oka H, Sugiyama S, Ogata N, Koide SI, et al. Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation. 2000;102(6):670-6. 145. Griffin BA. Lipoprotein atherogenicity: an overview of current mechanisms. The Proceedings of the Nutrition Society. 1999;58(1):163-9. 146. Miller GJ. Postprandial lipaemia and haemostatic factors. Atherosclerosis. 1998;141 Suppl 1:S47-51. 147. Sanders TA, Oakley FR, Cooper JA, Miller GJ. Influence of a stearic acid-rich structured triacylglycerol on postprandial lipemia, factor VII concentrations, and fibrinolytic activity in healthy subjects. The American journal of clinical nutrition. 2001;73(4):715-21. 148. Tholstrup T, Miller GJ, Bysted A, Sandstrom B. Effect of individual dietary fatty acids on postprandial activation of blood coagulation factor VII and fibrinolysis in healthy young men. The American journal of clinical nutrition. 2003;77(5):1125-32. 149. Broijersen A, Karpe F, Hamsten A, Goodall AH, Hjemdahl P. Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis. 1998;137(1):107-13. 150. Hyson DA, Paglieroni TG, Wun T, Rutledge JC. Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2002;8(2):147-55. 151. Ruano J, Lopez-Miranda J, de La Torre R, Delgado-Lista J, Fernández J, Caballero J, et al. Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. 2007;86(2):341-6. 152. Nakamura K, Miyoshi T, Yunoki K, Ito H. Postprandial hyperlipidemia as a potential residual risk factor. Journal of cardiology. 2016;67(4):335-9. 153. Ip CK, Jin DM, Gao JJ, Meng Z, Meng J, Tan Z, et al. Effects of add-on lipid-modifying therapy on top of background statin treatment on major cardiovascular events: A meta-analysis of randomized controlled trials. International journal of cardiology. 2015;191:138-48. 154. Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F. Olive oil and haemostasis: platelet function, thrombogenesis and fibrinolysis. Current pharmaceutical design. 2011;17(8):778-85. 155. de Vries M, Klop B, Castro Cabezas M. The use of the non-fasting lipid profile for lipid-lowering therapy in clinical practice - point of view. Atherosclerosis. 2014;234(2):473-5. 156. Klop B, Cohn JS, van Oostrom AJ, van Wijk JP, Birnie E, Castro Cabezas M. Daytime triglyceride variability in men and women with different levels of triglyceridemia. Clinica chimica acta; international journal of clinical chemistry. 2011;412(23-24):2183-9. 157. Mihas C, D Kolovou G, P Mikhailidis D, Kovar J, Lairon D, G Nordestgaard B, et al. Diagnostic Value of Postprandial Triglyceride Testing in Healthy Subjects:A Meta-Analysis. 2011;9(3):271-80. 158. Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, Ooi TC, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Current vascular pharmacology. 2011;9(3):258-70. 159. Mihas C, Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Current vascular pharmacology. 2011;9(3):271-80. 160. Karpe F, Hamsten A. Determination of apolipoproteins B-48 and B-100 in triglyceride-rich lipoproteins by analytical SDS-PAGE. Journal of lipid research. 1994;35(7):1311-7. 161. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. Journal of the American College of Cardiology. 2013;61(4):427-36. 162. Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Annals of clinical biochemistry. 2011;48(Pt 6):498-515. 163. Castro Cabezas M, Halkes CJ, Meijssen S, van Oostrom AJ, Erkelens DW. Diurnal triglyceride profiles: a novel approach to study triglyceride changes. Atherosclerosis. 2001;155(1):219-28. 164. Meigs JB, Nathan DM, D'Agostino RB, Sr., Wilson PW, Framingham Offspring S. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes care. 2002;25(10):1845-50. 165. Qazi MU, Malik S. Diabetes and Cardiovascular Disease: Original Insights from the Framingham Heart Study. Global heart. 2013;8(1):43-8. 166. Fox CS, Pencina MJ, Meigs JB, Vasan RS, Levitzky YS, D'Agostino RB, Sr. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation. 2006;113(25):2914-8. 167. Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocrine reviews. 1998;19(5):583-92. 168. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World journal of gastroenterology : WJG. 2009;15(33):4137-42. 169. Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes. 1994;43(6):836-41. 170. Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193(2):328-34. 171. Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. The New England journal of medicine. 1996;334(15):952-7. 172. Fontbonne A, Charles MA, Thibult N, Richard JL, Claude JR, Warnet JM, et al. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population: the Paris Prospective Study, 15-year follow-up. Diabetologia. 1991;34(5):356-61. 173. Xun P, Wu Y, He Q, He K. Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;98(6):1543-54. 174. Stout RW. Insulin and atheroma. 20-yr perspective. Diabetes care. 1990;13(6):631-54. 175. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes care. 1991;14(3):173-94. 176. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. The Journal of clinical investigation. 1991;87(6):2246-52. 177. Krone W, Naegele H, Behnke B, Greten H. Opposite effects of insulin and catecholamines on LDL-receptor activity in human mononuclear leukocytes. Diabetes. 1988;37(10):1386-91. 178. Krone W, Greten H. Evidence for post-transcriptional regulation by insulin of 3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol synthesis in human mononuclear leucocytes. Diabetologia. 1984;26(5):366-9. 179. Sowers JR, Frohlich ED. Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. The Medical clinics of North America. 2004;88(1):63-82. 180. Wilson PW, Kannel WB, Anderson KM. Lipids, glucose intolerance and vascular disease: the Framingham Study. Monographs on atherosclerosis. 1985;13:1-11. 181. Jaiswal M, Schinske A, Pop-Busui R. Lipids and lipid management in diabetes. Best practice & research Clinical endocrinology & metabolism. 2014;28(3):325-38. 182. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415-28. 183. Hiram Beltrán-Sánchez P, Michael O Harhay M, Meera M Harhay M, Sean McElligott M. Prevalence and trends of Metabolic Syndrome in the adult US population, 1999-2010. 2013:1-39. 184. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735-52. 185. Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation--mechanisms and therapeutic targets. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(8):1771-6. 186. Perez-Martinez P, Lopez-Miranda J. Editorial: nutritional therapy in metabolic syndrome. Curr Vasc Pharmacol. 2013;11(6):838-41. 187. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC medicine. 2011;9:48. 188. Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. Journal of the American College of Cardiology. 2007;49(4):403-14. 189. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102. 190. Sundstrom J, Vallhagen E, Riserus U, Byberg L, Zethelius B, Berne C, et al. Risk associated with the metabolic syndrome versus the sum of its individual components. Diabetes care. 2006;29(7):1673-4. 191. Guize L, Thomas F, Pannier B, Bean K, Jego B, Benetos A. All-cause mortality associated with specific combinations of the metabolic syndrome according to recent definitions. Diabetes care. 2007;30(9):2381-7. 192. Franco OH, Massaro JM, Civil J, Cobain MR, O'Malley B, D'Agostino RB, Sr. Trajectories of entering the metabolic syndrome: the framingham heart study. Circulation. 2009;120(20):1943-50. 193. Haring R, Wallaschofski H, Nauck M, Felix SB, Schmidt CO, Dorr M, et al. Total and cardiovascular disease mortality predicted by metabolic syndrome is inferior relative to its components. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2010;118(10):685-91. 194. Simons LA, Simons J, Friedlander Y, McCallum J. Is prediction of cardiovascular disease and all-cause mortality genuinely driven by the metabolic syndrome, and independently from its component variables? The Dubbo study. Heart, lung & circulation. 2011;20(4):214-9. 195. Global Burden of Metabolic Risk Factors for Chronic Diseases C, Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970-83. 196. Ruderman NB, Schneider SH, Berchtold P. The "metabolically-obese," normal-weight individual. Am J Clin Nutr. 1981;34(8):1617-21. 197. Gomez-Huelgas R, Narankiewicz D, Villalobos A, Wärnberg J, Mancera-Romero J, Cuesta AL, et al. Prevalence of Metabolically Discordant Phenotypes in a Mediterranean Population. The Imap Study. 2013:1-33. 198. Velho S, Paccaud F, Waeber G, Vollenweider P, Marques-Vidal P. Metabolically healthy obesity: different prevalences using different criteria. European journal of clinical nutrition. 2010;64(10):1043-51. 199. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617-24. 200. Choi KM, Cho HJ, Choi HY, Yang SJ, Yoo HJ, Seo JA, et al. Higher mortality in metabolically obese normal-weight people than in metabolically healthy obese subjects in elderly Koreans. Clinical endocrinology. 2013;79(3):364-70. 201. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. The Journal of clinical endocrinology and metabolism. 2006;91(8):2906-12. 202. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann Intern Med. 2013;159(11):758-69. 203. Liu L, Zhao SP, Wen T, Zhou HN, Hu M, Li JX. Postprandial hypertriglyceridemia associated with inflammatory response and procoagulant state after a high-fat meal in hypertensive patients. Coronary artery disease. 2008;19(3):145-51. 204. Mora S, Rifai N, Buring JE, Ridker PM. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118(10):993-1001. 205. Garcia-Rios A, Delgado-Lista J, Perez-Martinez P, Delgado-Casado N, Perez-Jimenez F, Lopez-Miranda J. Relevance of postprandial lipemia in metabolic syndrome. Curr Vasc Pharmacol. 2013;11(6):920-7. 206. Katsanos CS. Clinical considerations and mechanistic determinants of postprandial lipemia in older adults. Advances in nutrition. 2014;5(3):226-34. 207. Malik S, Wong ND, Franklin SS, Kamath TV, L'Italien GJ, Pio JR, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245-50. 208. Teramura M, Emoto M, Araki T, Yokoyama H, Motoyama K, Shinohara K, et al. Clinical impact of metabolic syndrome by modified NCEP-ATPIII criteria on carotid atherosclerosis in Japanese adults. 2007;14(4):172-8. 209. Sattar N, Gaw A, Scherbakova O, Ford I, O'Reilly DS, Haffner SM, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108(4):414-9. 210. Jackson KG, Walden CM, Murray P, Smith AM, Lovegrove JA, Minihane AM, et al. A sequential two meal challenge reveals abnormalities in postprandial TAG but not glucose in men with increasing numbers of metabolic syndrome components. 2012;220(1):237-43. 211. Grundy SM. Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clinical cornerstone. 2006;8 Suppl 1:S21-7. 212. Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes & metabolism. 2004;30(6):569-72. 213. Aguilar-Salinas CA, Garcia EG, Robles L, Riano D, Ruiz-Gomez DG, Garcia-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. The Journal of clinical endocrinology and metabolism. 2008;93(10):4075-9. 214. Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Dore CJ, McCarthy JP, et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity. 2012;20(1):76-87.