Dietary antioxidants for chronic periodontitis prevention and its treatmenta review on current evidences from animal and human studies

  1. Alfonso Varela-López
  2. Maurizio Battino
  3. Pedro Bullón
  4. José L. Quiles
Revista:
Ars pharmaceutica

ISSN: 2340-9894 0004-2927

Año de publicación: 2015

Volumen: 56

Número: 3

Páginas: 131-140

Tipo: Artículo

DOI: 10.4321/S2340-98942015000300001 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ars pharmaceutica

Resumen

Objetivos: Dada la relación existente entre periodontitis crónica y altos niveles de estrés oxidativo, esta revisión pretende clarificar qué papel puede desempeñar la ingesta de los diferentes antioxidantes de la dieta en el mantenimiento de un periodonto saludable y en la reducción del riesgo de padecer periodontitis crónica, así como el posible uso de terapias dietéticas basadas en estos para el tratamiento de dicha enfermedad. Métodos: Se utilizó la base de datos de la National Library of Medicine, Washington, DC (MEDLINE: PubMed) y todos los estudios en animales y humanos tratando el tema de interés en escritos Inglés disponibles online desde la creación de la base de datos hasta Mayo de 2015 fueron recopilados. Resultados: Los antioxidantes analizados a este respecto incluyen a la vitamina C, la vitamina A, algunos carotenoides y polifenoles, y el coenzima Q; así como los minerales, hierro, cobre y zinc que forman parte de enzimas antioxidantes. Aun así hay una escasez generalizada de estudios con pocos estudios en humanos, la mayoría de tipo observacional. Entre los diferentes antioxidantes, la vitamina E y los polifenoles parecen ser los que más evidencias a favor de su efecto beneficioso suman, pero en general los estudios son insuficientes para descartar o establecer qué antioxidantes son útiles y cuáles no. Conclusiones: En general, los datos presentados indicarían que los antioxidantes de la dieta resultan beneficiosos para la salud periodontal, al menos bajo ciertas circunstancias. Sin embargo se necesitan más estudios para establecer la relación entre la periodontitis crónica y cada antioxidante concreto así como para diseñar intervenciones dietéticas útiles en la gestión de esta enfermedad.

Referencias bibliográficas

  • Page, RC, Schroeder, HE. (1976). Pathogenesis of inflammatory periodontal disease: A summary of current work. Lab Investig J Tech Methods Pathol.. 34. 235-249
  • Bahekar, AA, Singh, S, Saha, S, Molnar, J, Arora, R. (2007). The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J.. 154. 830-837
  • Chun, Y-HP, Chun, K-RJ, Olguin, D, Wang, H-L. (2005). Biological foundation for periodontitis as a potential risk factor for atherosclerosis. J Periodontal Res.. 40. 87-95
  • Lindhe, J, Ranney, R, Lamster, I, Charles, A, Chung, C-P, Flemmig, T. (1999). Consensus report: chronic periodontitis. Ann Periodontol.. 4. 38
  • Beck, JD, Arbes, S. Carranza's clinical periodontology. 9. W.B. Saunders. Philadelphia. 74-94
  • Graves, DT, Cochran, D. (2003). The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol.. 74. 391-401
  • Garlet, GP, Cardoso, CR, Silva, TA, Ferreira, BR, Ávila-Campos, MJ, Cunha, FQ. (2006). Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors. Oral Microbiol Immunol.. 21. 12-20
  • Cochran, DL. (2008). Inflammation and bone loss in periodontal disease. J Periodontol.. 79. 1569-1576
  • Birkedal-Hansen, H. (1993). Role of Matrix Metalloproteinases in Human Periodontal Diseases. J Periodontol.. 64. 474-484
  • Chapple, IL, Matthews, JB. (2007). The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol. 2000. 43. 160-232
  • Tüter, G, Kurtis, B, Serdar, M. (2001). Interleukin-1β and thiobarbituric acid reactive substance (TBARS) levels after phase I periodontal therapy in patients with chronic periodontitis. J Periodontol.. 72. 883-888
  • Panjamurthy, K, Manoharan, S, Ramachandran, CR. (2005). Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett.. 10. 255-264
  • Sugano, N, Kawamoto, K, Numazaki, H, Murai, S, Ito, K. (2000). Detection of mitochondrial DNA mutations in human gingival tissues. J Oral Sci.. 42. 221-223
  • D'Aiuto, F, Graziani, F, Tetè, S, Gabriele, M, Tonetti, MS. (2005). Periodontitis: from local infection to systemic diseases. Int J Immunopathol Pharmacol.. 18. 1-11
  • Brock, GR, Butterworth, CJ, Matthews, JB, Chapple, ILC. (2004). Local and systemic total antioxidant capacity in periodontitis and health. J Clin Periodontol.. 31. 515-521
  • Chapple, ILC, Brock, G, Eftimiadi, C, Matthews, JB. (2002). Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease. Mol Pathol.. 55. 367
  • Monboisse, JC, Borel, JP. (1992). Oxidative damage to collagen. EXS. 62. 323-327
  • Waddington, RJ, Moseley, R, Embery, G. (2000). Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis.. 6. 138-151
  • Mukhopadhyay, CK, Chatterjee, IB. (1994). Free metal ion-independent oxidative damage of collagen: Protection by ascorbic acid. J Biol Chem.. 269. 30200-30205
  • Moseley, R, Waddington, RJ, Embery, G, Rees, SG. (1998). The modification of alveolar bone proteoglycans by reactive oxygen species in vitro. Connect Tissue Res.. 37. 13-28
  • Bartold, PM, Page, RC. (1986). The effect of chronic inflammation on gingival connective tissue proteoglycans and hyaluronic acid. J Oral Pathol Med.. 15. 367-374
  • Hara, K, Takahashi, T. (1975). Hydroxyproline content in gingival exudate before and after periodontal surgery. J Periodontal Res.. 10. 270-274
  • Bowers, MR, Fisher, LW, Termine, JD, Somerman, MJ. (1989). Connective tissue-associated proteins in crevicular fluid: potential markers for periodontal diseases. J Periodontol.. 60. 448-451
  • Giannobile, WV. (1999). C-Telopeptide Pyridinoline Cross-Links: Sensitive Indicators of Periodontal Tissue Destruction. Ann N Y Acad Sci.. 878. 404-412
  • Palys, MD, Haffajee, AD, Socransky, SS, Giannobile, WV. (1998). Relationship between C-telopeptide pyridinoline cross-links (ICTP) and putative periodontal pathogens in periodontitis. J Clin Periodontol.. 25. 865-871
  • Waddington, RJ, Embery, G, Smith, AJ. (1998). Immunochemical detection of the proteoglycans decorin and biglycan in human gingival crevicular fluid from sites of advanced periodontitis. Arch Oral Biol.. 43. 287-295
  • Purvis, JA, Embery, G, Oliver, WM. (1984). Molecular size distribution of proteoglycans in human inflamed gingival tissue. Arch Oral Biol.. 29. 513-519
  • Rittié, L, Monboisse, J-C, Gorisse, M-C, Gillery, P. (2002). Malondialdehyde binding to proteins dramatically alters fibroblast functions. J Cell Physiol.. 191. 227-236
  • Hall, TJ, Schaeublin, M, Jeker, H, Fuller, K, Chambers, TJ. (1995). The Role of Reactive Oxygen Intermediates in Osteoclastic Bone Resorption. Biochem Biophys Res Commun.. 207. 280-287
  • Garrett, IR, Boyce, BF, Oreffo, RO, Bonewald, L, Poser, J, Mundy, GR. (1990). Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest.. 85. 632
  • Soell, M, Elkaim, R, Tenenbaum, H. (2002). Cathepsin C, matrix metalloproteinases, and their tissue inhibitors in gingiva and gingival crevicular fluid from periodontitis-affected patients. J Dent Res.. 81. 174-178
  • Pozo, P, Valenzuela, MA, Melej, C, Zaldivar, M, Puente, J, Martinez, B. (2005). Longitudinal analysis of metalloproteinases, tissue inhibitors of metalloproteinases and clinical parameters in gingival crevicular fluid from periodontitis-affected patients. J Periodontal Res.. 40. 199-207
  • Tüter, G, Kurtiş, B, Serdar, M, Yücel, A, Ayhan, E, Karaduman, B. (2005). Effects of phase I periodontal treatment on gingival crevicular fluid levels of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1. J Clin Periodontol.. 32. 1011-1015
  • Hadjigogos, K. (2003). The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med.. 45. 7-13
  • Hemmerlein, B, Johanns, U, Halbfass, J, Böttcher, T, Heuser, M, Radzun, H-J. (2004). The balance between MMP-2/-9 and TIMP-1/-2 is shifted towards MMP in renal cell carcinomas and can be further disturbed by hydrogen peroxide. Int J Oncol.. 24. 1069-1076
  • Savaraj, N, Wei, Y, Unate, H, Liu, P-M, Wu, CJ, Wangpaichitr, M. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radic Res.. 39. 373-381
  • Kawaguchi, Y, Tanaka, H, Okada, T, Konishi, H, Takahashi, M, Ito, M. (1996). The effects of ultraviolet A and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res.. 288. 39-44
  • Beckman, KB, Ames, BN. (1998). The free radical theory of aging matures. Physiol Rev.. 78. 547-581
  • Halliwell, B, Gutteridge, JMC. (1999). Free radicals in biology and medicine. 3. Oxford university press. Nueva York.
  • Benzie, IFF, Choi, S-W. (2014). Advances in Food and Nutrition Research. Academic Press. Londres. 1-53
  • Ames, BN, Shigenaga, MK, Hagen, TM. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci.. 90. 7915-7922
  • Machlin, LJ, Bendich, A. (1987). Free radical tissue damage: protective role of antioxidant nutrients. FASEB J.. 1. 441-445
  • Benzie, IF. (1999). Vitamin C: prospective functional markers for defining optimal nutritional status. Proc Nutr Soc.. 58. 469-476
  • Padh, H. (1991). Vitamin C: newer insights into its biochemical functions. Nutr Rev.. 49. 65-70
  • Carr, A, Frei, B. (1999). Does vitamin C act as a pro-oxidant under physiological conditions?. FASEB J.. 13. 1007-1024
  • Rubinoff, AB, Latner, PA, Pasut, LA. (1989). Vitamin C and oral health. J Can Dent Assoc.. 55. 705-707
  • Freeland, JH, Cousins, RJ, Schwartz, R. (1976). Relationship of mineral status and intake to periodontal disease. Am J Clin Nutr.. 29. 745-749
  • Esaki, M, Morita, M, Akhter, R, Akino, K, Honda, O. (2010). Relationship between folic acid intake and gingival health in non-smoking adults in Japan. Oral Dis.. 16. 96-101
  • Petti, S, Cairella, G, Tarsitani, G. (2000). Nutritional variables related to gingival health in adolescent girls. Community Dent Oral Epidemiol.. 28. 407-413
  • Nishida, M, Grossi, SG, Dunford, RG, Ho, AW, Trevisan, M, Genco, RJ. (2000). Dietary vitamin C and the risk for periodontal disease. J Periodontol.. 71. 1215-1223
  • Iwasaki, M, Manz, MC, Taylor, GW, Yoshihara, A, Miyazaki, H. (2012). Relations of serum ascorbic acid and α-tocopherol to periodontal disease. J Dent Res.. 91. 167-172
  • Tomofuji, T, Ekuni, D, Sanbe, T, Irie, K, Azuma, T, Maruyama, T. (2009). Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med.. 46. 163-168
  • Sanbe, T, Tomofuji, T, Ekuni, D, Azuma, T, Tamaki, N, Yamamoto, T. (2007). Oral administration of vitamin C prevents alveolar bone resorption induced by high dietary cholesterol in rats. J Periodontol.. 78. 2165-2170
  • Coven, EM. (1965). Effect of prophylaxis and vitamin supplementation upon periodontal index in children. J Periodontol.. 36. 494-500
  • Lingström, P, Fure, S, Dinitzen, B, Fritzne, C, Klefbom, C, Birkhed, D. (2005). The release of vitamin C from chewing gum and its effects on supragingival calculus formation. Eur J Oral Sci.. 113. 20-27
  • Abou Sulaiman, AE, Shehadeh, RMH. (2010). Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis. J Periodontol.. 81. 1547-1554
  • Glickman, I, Dines, MM. (1963). Effect of increased ascorbic acid blood levels on the ascorbic acid level in treated and non-treated gingiva. J Dent Res.. 42. 1152-1158
  • Holden, JM, Eldridge, AL, Beecher, GR, Marilyn Buzzard, I, Bhagwat, S, Davis, CS. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. J Food Compos Anal.. 12. 169-196
  • Parker, R. Wiley encyclopedia of food science and technology. 2. Wiley. Nueva York. 909-915
  • Olson, JA. (1989). Provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A. J Nutr.. 119. 105-108
  • Galano, A. (2007). Relative antioxidant efficiency of a large series of carotenoids in terms of one electron transfer reactions. J Phys Chem B.. 111. 12898-12908
  • Iwasaki, M, Moynihan, P, Manz, MC, Taylor, GW, Yoshihara, A, Muramatsu, K. (2013). Dietary antioxidants and periodontal disease in community-based older Japanese: a 2-year follow-up study. Public Health Nutr.. 16. 330-338
  • Burton, GW, Ingold, KU. (1984). Beta-carotene: an unusual type of lipid antioxidant. Science. 224. 569-573
  • Urbach, C, Hickman, K, Harris, PL. (1952). Effect of individual vitamins A, C, E, and carotene administered at high levels on their concentration in the blood. Exp Med Surg.. 10. 7
  • Mathews-Roth, MM, Pathak, MA, Fitzpatrick, TB, Harber, LH, Kass, EH. (1977). BEta carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases. Arch Dermatol.. 113. 1229-1232
  • Rao, AV, Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr Res.. 19. 305-323
  • Lobo, V, Patil, A, Phatak, A, Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev.. 4. 118
  • Srividya, AR, Venkatesh, N, Vishnuvarthan, VJ. (2010). Nutraceutical as Medicine. Int J Adv Pharma Sci.. 132-145
  • Wong, RS, Radhakrishnan, AK. (2012). Tocotrienol research: past into present. Nutr Rev.. 70. 483-490
  • Traber, MG, Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radic Biol Med.. 43. 4-15
  • Packer, L, Weber, SU, Rimbach, G. (2001). Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J Nutr.. 131. 369S-373S
  • Roy, S, Lado, BH, Khanna, S, Sen, CK. (2002). Vitamin E sensitive genes in the developing rat fetal brain: a high-density oligonucleotide microarray analysis. FEBS Lett.. 530. 17-23
  • Carvalho, R de S, de Souza, CM, Neves, JC de S, Holanda-Pinto, SA, Pinto, LMS, Brito, GAC. (2013). Vitamin E does not prevent bone loss and induced anxiety in rats with ligature-induced periodontitis. Arch Oral Biol.. 58. 50-58
  • Gupta, OP, Shaw, JH. (1956). Periodontal disease in the rice rat: I. Anatomic and histopathologic findings. Oral Surg Oral Med Oral Pathol.. 9. 592-603
  • Cohen, ME, Meyer, DM. (1993). Effect of dietary vitamin E supplementation and rotational stress on alveolar bone loss in rice rats. Arch Oral Biol.. 38. 601-606
  • Singh, N, Chander Narula, S, Kumar Sharma, R, Tewari, S, Kumar Sehgal, P. (2013). Vitamin E Supplementation, Superoxide Dismutase Status, and Outcome of Scaling and Root Planing in Patients With Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol.. 85. 242-249
  • Zuo, XL, Chen, JM, Zhou, X, Li, XZ, Mei, GY. (2006). Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biol Trace Elem Res.. 114. 41-53
  • Uçkardeş, Y, Tekçiçek, M, Ozmert, EN, Yurdakök, K. (2009). The effect of systemic zinc supplementation on oral health in low socioeconomic level children. Turk J Pediatr.. 51. 424-428
  • Orbak, R, Kara, C, Ozbek, E, Tezel, A, Demir, T. (2007). Effects of zinc deficiency on oral and periodontal diseases in rats. J Periodontal Res.. 42. 138-143
  • Tamaki, N, Orihuela-Campos, RC, Inagaki, Y, Fukui, M, Nagata, T, Ito, H-O. (2014). Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic Biol Med.. 75. 222-9
  • Casati, MZ, Algayer, C, Cardoso da Cruz, G, Ribeiro, FV, Casarin, RC, Pimentel, SP. (2013). Resveratrol decreases periodontal breakdown and modulates local levels of cytokines during periodontitis in rats. J Periodontol.. 84. e58-e64
  • Carvalho, RR, Pellizzon, CH, Justulin, L, Felisbino, SL, Vilegas, W, Bruni, F. (2009). Effect of mangiferin on the development of periodontal disease: Involvement of lipoxin A 4, anti-chemotaxic action in leukocyte rolling. Chem Biol Interact.. 179. 344-350
  • Cai, X, Li, C, Du, G, Cao, Z. (2008). Protective effects of baicalin on ligature-induced periodontitis in rats. J Periodontal Res.. 43. 14-21
  • Napimoga, MH, Clemente-Napimoga, JT, Macedo, CG, Freitas, FF, Stipp, RN, Pinho-Ribeiro, FA. (2013). Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model. J Nat Prod.. 76. 2316-2321
  • Maiuri, MC, De Stefano, D, Di Meglio, P, Irace, C, Savarese, M, Sacchi, R. (2005). Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn Schmiedebergs Arch Pharmacol.. 371. 457-465
  • Cheng, W-C, Huang, R-Y, Chiang, C-Y, Chen, J-K, Liu, C-H, Chu, C-L. (2010). Ameliorative effect of quercetin on the destruction caused by experimental periodontitis in rats. J Periodontal Res.. 45. 788-795
  • Paola, RDI, Oteri, G, Mazzon, E, Crisafulli, C, Galuppo, M, Toso, RDAL. (2011). Effects of verbascoside, biotechnologically purified by Syringa vulgaris plant cell cultures, in a rodent model of periodontitis. J Pharm Pharmacol.. 63. 707-717
  • Takahama, U, Hirota, S, Oniki, T. (2006). Quercetin-dependent scavenging of reactive nitrogen species derived from nitric oxide and nitrite in the human oral cavity: interaction of quercetin with salivary redox components. Arch Oral Biol.. 51. 629-639
  • Bullon, P, Quiles, JL, Morillo, JM, Rubini, C, Goteri, G, Granados-Principal, S. (2009). Gingival vascular damage in atherosclerotic rabbits: hydroxytyrosol and squalene benefits. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc.. 47. 2327-2331
  • Brenes, M, García, A, García, P, Garrido, A. (2000). Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system. J Agric Food Chem.. 48. 5178-5183
  • Bullon, P, Battino, M, Varela-Lopez, A, Perez-Lopez, P, Granados-Principal, S, Ramirez-Tortosa, MC. (2013). Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PloS One. 8.
  • Granados-Principal, S, Quiles, JL, Ramirez-Tortosa, CL, Sanchez-Rovira, P, Ramirez-Tortosa, MC. (2010). Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev.. 68. 191-206
  • Cluis, CP, Burja, AM, Martin, VJ. (2007). Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol.. 25. 514-521
  • Crane, FL. (2001). Biochemical functions of coenzyme Q10. J Am Coll Nutr.. 20. 591-598
  • Gaby, AR. (1996). The role of coenzyme Q10 in clinical medicine: Part I. Alt Med Rev.. 1. 11-17
  • Shahla, A. (2000). Coenzyme Q10: A review. Hosp Pharm.. 35. 51-55
  • Wilkinson, EG, Arnold, RM, Folkers, K, Hansen, I, Kishi, H. (1975). Bioenergetics in clinical medicine: II. Adjunctive treatment with coenzyme Q in periodontal therapy. Res Commun Chem Pathol Pharmacol.. 12. 111-123
  • Shizukuishi, S, Hanioka, T, Tsunemitsu, A, Fukunaga, Y, Kishi, T, Sato, N. (1986). Clinical effect of Coenzyme 10 on periodontal disease: evaluation of oxygen utilisation in gingiva by tissue reflectance spectrophotometry. Biomed Clin Asp Coenzyme Q.. 5. 359-368
  • Varela-Lopez, A, Bullon, P, Battino, M, Ramirez-Tortosa, MC, Ochoa, JJ, Cordero, MD. (2015). Coenzyme Q protects against age-related alveolar bone loss associated to n-6 PUFA rich-diets by modulating mitochondrial mechanisms. J Gerontol A Biol Sci Med Sci..