Métodos computacionales en los sistemas de ecuaciones en derivadas parciales

  1. Moreno Frías, María Angeles
unter der Leitung von:
  1. Francisco Jesús Castro Jiménez Doktorvater/Doktormutter

Universität der Verteidigung: Universidad de Sevilla

Fecha de defensa: 22 von Mai von 2000

Gericht:
  1. José Luis Romero Romero Präsident/in
  2. Juan Rafael Sendra Pons Sekretär/in
  3. Luis Narváez Macarro Vocal
  4. Ángel Granja Barón Vocal
  5. Emilio Briales Moreno Vocal

Art: Dissertation

Teseo: 77436 DIALNET lock_openIdus editor

Zusammenfassung

La memoria tiene dos partes: La primera está dedicada a la comparación entre los métodos clásicos de Riquier-Janet(para el estudio de los sistemas de ecuaciones en derivadas parciales) y los métodos modernos del algébra computacional, Los resultados de Janet tienen la siguiente interpretación homológica: Los sistemas de Janet( y Riquier y otros) tienen grupos Ext(de orden superior a 1, a valores en el anillo de gérmenes de funciones olomorfas) nulos. En la segunda parte se estudian otros métodos efectivos para ciertos anillos de operadores diferenciales. Estos anillos incluyen a los anillos considerados en la primera parte y a los anillos de operadores sobre anillos de "fucniones" meromorfas con polos sobre un cruzamiento normal. Se desarrolla la noción de -bases de Gröbner para los ideales(a la izquierda) de estos anillos y, en particular, si los coeficientes están en un cuerpo (generalmente un cuerpo de funciones) entonces las -bases coinciden con las bases de Janet, estudiadas en la primera parte. Además, se compara la noción de -base de Gröbner con la noción de base de Gröbner en el álgebra de Weyl. Algunas aplicaciones son: A)Utilizando la eliminación de variables no conmutativas se calcula la intersecciones de ideales. B)Cálculo de las sicigias y de una resolución libre de un módelo finitamente generado sobre el anillo de operadores.