Control of electromagnetic energy by metamaterials

  1. Díaz Rubio, Ana
Dirigida por:
  1. Jesús Sánchez-Dehesa Moreno-Cid Director
  2. Jorge Juan Carbonell Olivares Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 31 de julio de 2015

Tribunal:
  1. Manuel José Freire Rosales Presidente/a
  2. Yolanda Jiménez Jiménez Secretario/a
  3. Eric Larhuelle Vocal

Tipo: Tesis

Resumen

Metamaterials are periodic structures whose unit cells are small compared to the wavelength at the operating frequency. Under these conditions, these artificial materials can be considered as homogeneous media whose constitutive parameters depend on the characteristics of the unit cells. The discovery of metamaterials opened a new research field that has produced many works with microwaves, optical waves and acoustic waves. In this context, the main goal of this thesis is the study of new structures based on metamaterials that allow controlling of electromagnetic energy. In particular, new solutions for localization and absorption of electromagnetic waves are proposed. The thesis has been developed in the Wave Phenomena Group of the Polytechnic University of Valencia and in collaboration with the Group of Acoustic and Electromagnetic Metamaterials at the University of Exeter. The problems studied in the first part of this thesis are energy harvesting for subsequent absorption, wireless power transfer and new systems that can be used as position sensors. To solve these problems a new type of cylindrical, multilayer and anisotropic structures known as Radial Photonic Crystals are used. The radial dependence of the constitutive parameters generates, in these structures, a behavior like a one dimensional photonic crystals. Among the results obtained with these structures, it is included the first experimental demonstration of a Radial Photonic Crystals based resonator. Absorption of electromagnetic waves by thin layers of lossy materials is the second topic of this thesis. The main target is the theoretical and experimental study of the absorption enhancement in thin layers by using two-dimensional periodic structures, also called metasurfaces. Specifically, we studied the effects of a square lattice of coaxial cavities covered by a thin layer of lossy material. As a result, an enhancement of the absorption peaks that can produce total absorption is achieved. The semi-analytical study of this structure has allowed obtaining expressions that control the position of the absorption peak and its amplitude; which have helped to develop a design methodology for total absorption systems.