A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets

  1. López Puga, Jorge 1
  2. García García, Juan 1
  1. 1 Universidad de Almería
    info

    Universidad de Almería

    Almería, España

    ROR https://ror.org/003d3xx08

Revista:
The Spanish Journal of Psychology

ISSN: 1138-7416

Año de publicación: 2012

Volumen: 15

Número: 3

Páginas: 1147-1162

Tipo: Artículo

DOI: 10.5209/REV_SJOP.2012.V15.N3.39404 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Spanish Journal of Psychology

Objetivos de desarrollo sostenible

Resumen

Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

Referencias bibliográficas

  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood, NJ: Prentice-Hall.
  • Altman, D. G., Lausen, B., Sauerbrei, W., & Schumacher, M. (1994). Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. Journal of the National Cancer Institute, 86, 829-835. http://dx.doi.org/10.1093/jnci/86.11.829 (Pubitemid 2100935)
  • Ankarali, H., Canan, A., Akkus, Z., Bugdayci, R., & AH, M. (2007). Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Systems with Applications, 32, 987-994. (Pubitemid 44821790)
  • Bartfay, E., Mackillop, W. J., & Pater, J. L. (2006). Comparing the predictive value of neural network models to logistic regression models on the risk of death for small-cell lung cancer patients. European Journal of Cancer Care, 15, 115-124. http://dx.doi. Org/10.1111/j.1365-2354.2005.00638.x (Pubitemid 43542752)
  • Bird, B. (1988). Implementing entrepreneurial ideas: The case for intention. Academy of Management Review, 13, 442-453. http://dx.doi.org/10.5465/ AMR. 1988.4306970
  • Brehm, S. S., Kassin, S., & Fein, S. (2005). Social psychology (6th Ed.). New York, NY: Houghton Mifflin.
  • Bull, S. B., Mak, C, & Greenwood, C. M. T. (2002). A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis, 39, 57-74. http://dx.doi.org/10. 1016/S0167-9473 (01) 00048-2
  • Cano, C. J., García, J., & Gea, A. B. (2003). Actitudes emprendedoras & creación de empresas en los estudiantes universitarios. [Entrepreneurial attitudes and business creation in university students] Almería, Spain: Servicio de Publicaciones de la Universidad de Almería/Consejo Social de la Universidad de Almería.
  • Chuang, H. L. (1997). High school youths' dropout and reenrollment behavior. Economics of Education Review, 16, 171-186. http://dx.doi.org/10.1016/ S0272-7757 (96) 00058-l
  • Conati, C., Gertner, A., & Van Lehn, K. (2002). Using Bayesian networks to manage uncertainty in student modeling. Modeling and User-Adapted Interaction, 12, 371-417.
  • Concato, J., Peduzzi, P., Holford, T. R., & Feinstein, A. R. (1995). Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. Journal of Clinical Epidemiology, 48, 1495-1501. http://dx. doi.org/10.1016/0895-4356 (95) 00510-2 (Pubitemid 26035532)
  • Conejo, R., Guzmán, E., Millán, E., Trella, M., Perez-de-la-Cruz, J. L., & Ríos, A. (2004). SIETTE: A web-based tool for adaptive testing. International Journal of Artificial Intelligence in Education, 14, 1-33.
  • Conejo, R., Millan, E., Perez de la Cruz, J. L., & Trella, M. (2001). Modelado del alumno: Un enfoque bayesiano. [Modeling students: A Bayesian approach]. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 12, 50-58.
  • Corman, J., Lussier, R., & Nolan, K. G. (1996). Factors that encourage entrepreneurial start-ups and existing firm expansion: A longitudinal study comparing recession and expansion periods. Academy of Entrepreneurship Journal, I, 43-55.
  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems. Harrisonburg, VA: Springer.
  • Cusmille, F., & Bangdiwala, S. I. (2000). Categorización de variables en el análisis estadístico de datos: consecuencias sobre la interpretación de resultados. [Categorizing variables in the statistical analysis of data: Consequences for interpreting the results]. Revista Panamericana de Salud Público, 8, 348-354. (Pubitemid 32059482)
  • Deaux, K., Dane, C. F., & Wrightsman, L. S. (1993). Social psychology in the 90s (6th Ed.). Pacific Grove, CA: Brooks/Cole.
  • De Maris, A. (2002). Explained variance in logistic regression. A Monte Carlo study of proposed measures. Sociological Methods & Research, 31, 27-74. http://dx.doi.org/10.1177/0049124102031001002 (Pubitemid 36714502)
  • Díaz, J. C. (2003). La creatión de empresas en Extremadura. Un analisis institutional. [Business creation in Extremadura. An institutional analysis]. (Unpublished doctoral dissertation) Universidad de Extremadura, Spain.
  • Domingos, P., & Pazzni, M. (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In L. Saitta (Ed.), Proceedings of the 13th International Conference on Machine Learning (pp. 105-112). Bari, Italy: Morgan Kaufman.
  • Dreisler, P., Blenker, P., & Nielsen, K. (2003). Promoting entrepreneurship - changing attitudes or behavior? Journal of Small Business and Enterprise Development, 10, 383-392. http://dx.doi. Org/10.1108/ 14626000310504693
  • Eftekhar, B., Mohammad, K., Ardebili, H. E., Ghodsi, M., & Ketabchi, E. (2005). Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Medical Informatics and Decision Making, 5(3), 1-8.
  • Feldman, R. S. (1998). Social psychology (2nd Ed.). Upper Saddle River, NJ: Prentice Hall.
  • Finch, H., & Schneider, M. K. (2007). Classification accuracy of neural networks vs. discriminant analysis, logistic regression, and classification and regression trees. Methodology, 3, 47-57. http://dx.doi.org/ 10.1027/1614-2241.3.2.47
  • Fini, R., Grimaldi, R., Marzocchi, G. L., & Sobrero, M. (2012). The determinants of corporate entrepreneurial intention within small and newly established firms. Entrepreneurship Theory and Practise, 36, 387-114. http://dx.doi.org/10.1111/j.1540-6520.2010.00411.x
  • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27-38. http://dx.doi.org/10.2307/2336755
  • Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
  • Flegal, K. M., Keyl, P. M., & Nieto, F. J. (1991). Differential misclassification arising from nondifferential errors in exposure measurement. American Journal of Epidemiology, 134, 1233-1244.
  • Franzoi, S. L. (2005). Social psychology (4th Ed.). New York, NY: McGraw Hill.
  • Fuller-Love, N. (2006). Management development in small firms. International Journal of Management Reviews, 8(3), 175-190. http://dx.doi. Org/10.1111/j.1468-2370.2006.00125.x (Pubitemid 44393594)
  • Fung, K. Y., & Howe, G. R. (1984). Methodological issues in case-control studies III: The effect of joint misclassification of risk factors and confounding factors upon estimation and power. International Journal of Epidemiology, 13, 366-370. http://dx.doi.org/10.1093/ije/133.366 (Pubitemid 14004411)
  • García, J., Cano, C. J., & Gea, A. B. (2005). Actitudes emprendedoras en estudiantes universitarios y empresarios. Evidencias de validez de un instrumento [Entrepreneurial attitudes in students and business people. Evidence of the validity of an instrument]. Iberpsicologia, 10(8), art. 12.
  • García, J., López, J., Cano, C. J., Gea, A. B., & De la Fuente, E. I. (2006, September). Aplicatión de las redes bayesianas al modelado de las actitudes emprendedoras. [Appling Bayesian networks to model entrepreneurial attitudes]. Communication presented at the IV Congress of Methodology of Surveys. Pamplona, Spain.
  • García, J., Lopez, J., De la Fuente, L., Cano, C. J., & Gea, A. B. (2007, February). Modelos de ecuaciones estructurales & redes bayesianas. Una perspective confirmatoria aplicada a las actitudes emprendedoras [Structural equation models and Bayesian networks. A confirmatory perspective applied to entrepreneurial attitudes]. Communication presented at the X Congress of Methodology of Social and Health Sciences. Barcelona, Spain.
  • Gartner, W. B. (1985). A conceptual framework for describing the phenomenon of new venture creation. Academy of Management Review, 10, 696-706. http://dx.doi.org/10.2307/258039
  • Gartner, W. B. (1988). "Who is an entrepreneur?" is the wrong question. American Journal of Small Business, 12(4), 11-32.
  • Genescá, E., & Capelleras, J. L. (2004). Un análisis comparativo de las caracteristicas de las microempresas en España [A comparative study of small businesses in Spain]. Universia Business Review, 2, 72-93.
  • Genesca, E., & Veciana, J. M. (1984). Actitudes hacia la creatión de empresas [Attitudes towards business creation]. Information Comercial Española, 611, 147-155.
  • Glymour, C. (2001). The mind's arrows. Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.
  • Glymour, C. (2003). Learning, prediction and causal Bayes nets. Trends in Cognitive Sciences, 7, 43-48. http://dx.doi.org/10. 1016/S1364-6613 (02) 00009-8 (Pubitemid 36051053)
  • Gómez, J. M., Mira, I., & Martinez, J. (2007). Condicionantes de la actividad emprendedora e instituciones de apoyo desde el ambito local: El caso de la provincia de Alicante [Conditioners of the enterprising activity and institutions of support from the local sphere: The case of the province of Alicante]. Revista de Empresa, 20, 20-31.
  • Gopnik, A., & Schulz, L. (2004). Mechanisms of theory formation in young children. Trends in Cognitive Sciences, 8, 371-377. http://dx.doi. Org/10.1016/j.tics.2004.06.005 (Pubitemid 39099463)
  • Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T, & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 3-32. http://dx.doi. Org/10.1037/0033-295X. 111.1.3 (Pubitemid 38157072)
  • Gopnik, A., Sobel, D. M., Schulz, L., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two, three, and four-years-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37, 620-629. http://dx.doi. Org/10.1037//0012-1649.37.5.620
  • Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 24-29.
  • Greiner, R., & Zhou, W. (2002). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Proceedings of the Eighteenth Annual National Conference on Artificial Intelligence, Aug, 2002, 167-173.
  • Greiner, R., Su, X., Shen, B., & Zhou, W. (2005). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59, 297-322. http://dx.doi. org/10.1007/s 10994-005-0469-0 (Pubitemid 40890481)
  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Englewood Cliffs, NY: Prentice Hall.
  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36. (Pubitemid 12142173)
  • Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148, 839-843. (Pubitemid 13033817)
  • Harrel, F. E., Lee, K. E., Matchar, D. B., & Reichert, T. A. (1985). Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treatment Reports, 69, 1071-1077. (Pubitemid 15249118)
  • Harris, M. L. & Gibson, S. G. (2008). Examining the entrepreneurial attitudes of US business students. Education and Training, 50, 568-581. http://dx.doi. Org/10.1108/00400910810909036
  • Hay Group, & SAP AG. (2003). Factbook, recursos humanos. [Factbook, human resources]. Navarre, Spain: Aranzadi.
  • Hayek, F. A. (1985). Richard Cantillon. The Journal of Libertarian Studies, 7, 217-247.
  • Hébert, R. F., & Link, A. (1989). In search of the meaning of entrepreneurship. Small Business Economics, 1, 39-49. http://dx.doi.org/10.1007/ BF00389915
  • Heckerman, D. (1995). A tutorial on learning with Bayesian networks (Technical Report S-TR-95-06). Redmon, WA: Microsoft Research.
  • Hirji, K. F., Mehta, C. R., & Patel, N. R. (1987). Computing distributions for exact logistic regression. Journal of the American Statistical Association, 82, 1110-1117. http://dx.doi.org/10.2307/2289388
  • Hsieh, F. Y. (1989). Sample size tables for logistic regression. Statistics in Medicine, 8, 795-802. http://dx.doi.org/10.1002/sim.4780080704 (Pubitemid 19178939)
  • Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 1623-1634. (Pubitemid 28367842)
  • Huefner, J. C., Hunt, H. K., & Robinson, P. B. (1996). A comparison of four scales predicting entrepreneurship. Academy of Entrepreneurship Journal, 1, 56-80.
  • Irala, J., Fernández-Crehuet, R., & Serrano, A. (1997). Intervalos de confianza anormalmente amplios en regresion logistica: Interpretaci6n de resultados de programas estadisticos [Abnormally broad confidence intervals in logistic regression: Interpretation of results of statistical programs]. Revista Panamericana de Salud Publico, I, 230-234. (Pubitemid 27321850)
  • Jaimes, F., Farbiarz, J., Alvarez, D., & Martinez, C. (2005). Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Critical Care, 9, 150-156.
  • Jovel, A. J. (1995). Análisis de regresión logistica [Logistic regression analysis]. Madrid, Spain: Centro de Investigaciones Sociológicas.
  • Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation. Cognitive Science, 20, 137-194. http://dx.doi.org/10. 1016/S0364-0213 (99) 80005-6 (Pubitemid 126171392)
  • Kadie, C. M., Hovel, D., & Horvitz, E. (2001). MSBNx: A component-centric toolkit for modeling and inference with Bayesian networks (Technical Report MSTTR-2001-67). Redmond, WA: Microsoft Research.
  • Kautonen, T., Tornikoski, E. T., & Kibler, E. (2011). Entrepreneurial intentions in the third age: The impact of perceived age norms. Small Business Economics, 37, 279-234. http://dx.doi.org/10.1007/s11187-009-9238-y
  • King, E., & Ryan, T. P. (2002). A preliminary investigation of maximum likelihood logistic regression versus exact logistic regression. The American Statistician, 56, 163-170. http://dx. doi.org/10.1198/00031300283
  • King, G., & Zeng, L. (2001a). Explaining rare events in international relations. International Organization, 55, 693-715. http://dx.doi.org/10.1162/ 00208180152507597 (Pubitemid 33584933)
  • King, G., & Zeng, L. (2001b). Logistic regression in rare events data. Political Analysis, 9, 137-163. http://dx.doi.org/10.1093/oxfordjournals. pan. a004868
  • Krueger, N. F., & Brazeal, D. V. (1994). Entrepreneurial potential and potential entrepreneurs. Entrepreneurship Theory and Practice, 18, 91-104.
  • Krueger, N. F., & Carsrud, A. L. (1993). Entrepreneurial intentions: Applying the theory of planned behavior. Entrepreneurship and Regional Development, 5, 315-330. http://dx.doi.org/10. 1080/08985629300000020
  • Krueger, N. F., Reilly, M. D., & Carsrud, A. L. (2000). Competing models of entrepreneurial intentions. Journal of Business Venturing, 15, 411-432. http://dx.doi.org/10.1016/S0883-9026 (98) 00033-0
  • Krynski, T. R., & Tenenbaum, J. B. (2007). The role of causality in judgment under uncertainty. Journal of Experimental Psychology: General, 136, 430-450. http://dx.doi.org/10.1037/0096-3445.136.3.430
  • Kumar, A., Rao, V. R., & Soni, H. (1995). An empirical comparison of neural network and logistic regression models. Marketing Letters, 6, 251-263. http://dx.doi.org/10.1007/BF00996189
  • Lee, S. M., Abbott, P., & Johantgen, M. (2005). Logistic regression and Bayesian networks to study outcomes using large data sets. Nursing Research, 2, 133-138. http://dx.doi.org/10.1097/00 006199-200503000-00009 (Pubitemid 40528993)
  • Licht, A. N., & Siegel, J. I. (2006). The social dimensions of entrepreneurship. In M. Casson, B. Yeung, A. Basu, & N. Wadeson (Eds.), The Oxford handbook of entrepreneurship (pp. 514-539). New York, NY: Oxford University Press.
  • Lilienfeld, D. E., & Pyne, D. A. (1984). The logistic analysis of epidemiologic prospective studies: Investigation by simulation. Statistics in Medicine, 3, 15-26. http://dx.doi.org/10. I002/sim.4780030104 (Pubitemid 14142273)
  • Liñán, F., Battistelli, A., & Moriano, J. A. (2008). Entrepreneurial intentions in Europe. In J. A. Moriano, M. Gorgievski, & M. Lukes (Eds.), Teaching psychology of entrepreneurship: Perspectives from six European countries (pp. 21-43). Madrid, Spain: National Open University (UNED).
  • Liñán, F., Rodríguez-Cohard, J. C, & Rueda-Cantuche, J. M. (2011). Factors affecting entrepreneurial intention levels: A role for education. International Entrepreneurship Management Journal, 7, 195-218. http://dx.doi.org/10.1007/sll365-010-0154-z
  • Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: SAGE.
  • López, J. (2009). Modelos predictivos en actitudes emprendedoras: Análisis comparativo de las condiciones de ejecución de las redes bayesianas & la regresión logistica [Predictive models of entrepreneurial attitudes: Comparative performance analysis of Bayesian networks and logistic regression]. (Unpublished doctoral dissertation) Universidad de Almería, Spain.
  • López, J., & García, J. (2007). Valores, actitudes y comportamiento ecológico modelados con una red bayesiana [Values, attitudes and ecologic behavior modeled with a Bayesian net]. Medio Ambiente & Comportamiento Humano, 8, 159-175.
  • Lopez, J., & García, J. (2009). Asimetría en el razonamiento causal bayesiano bajo incertidumbre [Asymmetry in Bayesian causal reasoning under uncertainty]. Boletín de Psicología, 95, 43-58.
  • López, J., & García, J. (2011). Utilidad de las redes bayesianas en psicología. [Utility of the Bayesian networks in psychology]. Almería, Spain: Editorial de la Universidad de Almería.
  • Lopez, J., García, J., Cano, C. J., Gea, A. B., & De la Fuente, L. (2010). A definition of potential entrepreneur from a probabilistic point of view. In M. J. Blanca, R. Alarcón, & D. López-Montiel (Coords.), Actas del XI Congreso de Metodología de las Ciencias Sociales & de la Salud (pp. 577-581). Málaga: UMA-Tecnolex.
  • López, J., García, J., De la Fuente, L., & De la Fuente, E. I. (2007). Las redes bayesianas como herramienta de modelado en psicología [Bayesian nets as modeling tools in psychology]. Anales de Psicología, 23, 307-316.
  • López, J., Ramírez, A., & Casado, M. P. (2012). Modelling entrepreneurial attitudes in women entrepreneurs with bayesian networks. Psychology, 3, 265-271. http://dx.doi.org/10.4236/psych.2012.33037
  • López, J., Ruiz-Ruano, A. M., & García, J. (2008, November). Relationship between self-assessment and marks in higher education: linear, logistic and Bayesian analysis. Communication presented at the International Conference of Education, Research and Innovation (ICERI 2008). Madrid, Spain.
  • Martin, J., & Van Lehn, K. (1995). Student assessment using Bayesian nets. International Journal of Human-Computer Studies, 42, 575-591. http://dx.doi.org/10.1006/ijhc.1995.1025
  • Martinez, I., & Rodríguez, C. (2003). Modelos graficos. [Graphical models]. In Y. del Águila et al. (Eds.), Técnicas estadisticas aplicadas al análisis de datos (pp. 217-257). Almería, Spain: Servicio de Publicaciones de la Universidad de Almería.
  • McClelland, D. (1955). Some social consequences of achievement motivation. In M. R. Jones (Ed.), Nebraska Symposium on Motivation. Lincoln, NE: University of Nebraska Press.
  • McClelland, D. (1961). The achieving society. New York, NY: Free Press.
  • McKenzie, B., Ugbah, S., & Smothers, N. (2007). "Who is an entrepreneur?" Is it still the wrong question? Academy of Entrepreneurship Journal, 13, 23-43.
  • Mehta, C. R., & Patel, N. R. (1995). Exact logistic regression: Theory and examples. Statistics in Medicine, 14, 2143-2160. http://dx.doi. Org/10.1002/sim.4780141908
  • Miller, B. K., Bell, J. D., Palmer, M., & Gonzalez, A. (2009). Predictors of entrepreneurial intentions: A quasi-experiment comparing students enrolled in introductory management and entrepreneurship classes. Journal of Business and Entrepreneurship, 21(2), 39-62.
  • Mislevy, R. J., & Gitomer, D. H. (1996). The role of probabilitybased inference in an intelligent tutoring system. User-Mediated and User-Adapted Interaction, 128, 253-282. http://dx.doi.org/10.1007/BF01126112
  • Morales, J. F., Rebolloso, E., & Moya, M. (1994). Actitudes [Attitudes]. In J. F. Morales (Ed.), Psicologia social [Social psychology], (pp. 495-524). Madrid, Spain: McGraw-Hill.
  • Morales, M. E. (2006). Modelización & predictión en estadística universitaria [Modeling and prediction in university statistics]. (Unpublished doctoral dissertation). Universidad de Almeria, Spain.
  • Moriano, J. A., Gómez, A., Laguna, M., & Roznowski, B. (2008). Validación de un cuestionario para medir la intencion emprendedora. Una aplicación en España & Polonia [Validation of a questionnaire to measure the entrepreneurial intention. An application in Spain and Poland]. In J. F. Morales, C. Huici, A. Gómez, E. Gaviria (Coords.), Método, teoría e investigatión en psicología social [Methot, theory and research in social psychology] (pp. 101-121). Madrid, Spain: Pearson.
  • Morillas, J. J. (2009). Los nuevos yacimientos de empleo entre las estrategias para el apoyo a emprendedores en el marco de los programas de desarrollo local: Situatión actual en Andalucía [The new sources of employment between the strategies supporting entrepreneurs within the framework of the programs of local development: Current situation in Andalusia]. (Unpublished doctoral dissertation) Universidad de Almeria, Spain.
  • Narayan, S., & Jurafsky, D. (1998, August). Bayesian models of human sentence processing. Communication presented at the XX Annual Meeting of the Cognitive Science Society. Madison, WI.
  • Narayan, S., & Jurafsky, D. (2002). A Bayesian model predicts human parse preference and reading times in sentence processing. Advances in Neural Information Processing, 14, 59-65.
  • Ng, A. Y, & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparation of logistic regression and naive Bayes. Advances in Neural Information Processing Systems, 14, 841-848.
  • Ortega, M., & Cayuela, A. (2002). Regresion logistica no condicionada & tamaiio de muestra: Una revisi6n bibliografica [Unconditioned logistic regression and sample size: A reference source review]. Revista Española de Salud Público, 76, 85-93.
  • Othman, N. H., & Ishak, S. B. (2009). Attitude choosing a career in entrepreneurship amongst graduates. European Journal of Social Sciences, 10. 419-434.
  • Peduzzi, P., Concato, J., Feinstein, A. R., & Holford, T. R. (1995). Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. Journal of Clinical Epidemiology, 48, 1503-1510. http://dx.doi.org/10.1016/0895-4356 (95) 00048-8 (Pubitemid 26035533)
  • Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 1373-1379. http://dx.doi.org/10.1016/S0895-4356 (96) 00236-3 (Pubitemid 27028925)
  • Peñas, M. J., & Quijano, J. (2008, April). ¿Es posible fomentar el caracter emprendedor desde la universidad? Un diseno de la asignatura «Empresa Familiar» [Is it possible to promote entrepreneurial disposition from the university? Design of the subject «Familiar Business»]. Communication presented at the International Congress of Entrepreneurs of the City of Salamanca. Salamanca, Spain.
  • Peng, C. Y. J., & So, T. S. H. (2002). Logistic regression analysis and reporting: a premier. Understanding Statistics, I, 31-70.
  • Phan, P. H., & Butler, J. E. (2003). Entrepreneurs' attitudes, strategy choices, and firm performance. Journal of Business and Entrepreneurship, 15, 74-91.
  • Polopolus, L. C, & Emerson, R. D. (1991). Entrepreneurship, sanctions, and labor contracting. Southern Journal of Agricultural Economics, 12, 57-68.
  • Ragland, D. R. (1992). Dichotomizing continuous outcome variables: Dependence of the magnitude of association and statistical power of the cutpoint. Epidemiology, 3, 434-410. http://dx.doi. Org/10.1097/00001648- 199209000-00009
  • Reade, S., & Kupper, L. L. (1995). On the effects of predictor misclassification in multiple linear regression analysis. Communications in Statistics: Theory and Methods, 24, 13-37.
  • Robinson, P. B., Stimpson, D. V., Huefner, J. C, & Hunt, H. K. (1991). An attitude approach to the prediction of entrepreneurship. Entrepreneurship Theory and Practice, 15, 13-31.
  • Rogoff, E. G., & Lee, M. S. (1996). Does firm origin matter? An empirical examination of types of small business owners and entrepreneurs. Academy of Entrepreneurship Journal, 1, 1-17.
  • Ross, T., Wettig, H., Grünwald, P., Myllymäki, P., & Tirri, H. (2005). On discriminative Bayesian networks classifiers and logistic regression. Machine Learning, 59, 267-296. (Pubitemid 40890480)
  • Ruiz, J., Rojas, A., & Suárez, A. (2008). Actitudes de los estudiantes universitarios de Andalucía ante la creación de empresas [Attitudes of the university students of Andalusia about the creation of companies]. Cádiz, Spain: Servicio de Publicaciones de la Universidad de Cádiz.
  • Samuelson, P. A. (1970). Economics (8th Ed.). New York, NY: McGraw-Hill.
  • Sinchez, M. L. (2003). El perfil psicologico del autoempleado [The self-employed psychological profile]. (Electronically published doctoral dissertation). Universidad Complutense de Madrid, Spain.
  • Shapero, A., & Sokol, L. (1982). The social dimensions of entrepreneurship. In C. Kent, D. Sexton, & K. H. Vesper (Eds.), The encyclopedia of entrepreneurship (pp. 72-90). Englewood Cliffs, NJ: Prentice-Hall.
  • Shapero, A. (1975). The displaced, uncomfortable entrepreneur. Psychology Today, 9, 83-133.
  • Shapero, A. (1985). Why entrepreneurship? A worldwide perspective. Journal of Small Business Management, 23(4), 1-5.
  • Shen, B., Su, X., Greiner, R., Musilek, P., & Cheng, C. (2003, November). Discriminative parameter learning of general bayesian network classifiers. Communication presented at the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-03). Sacramento, CA.
  • Silva, L. G, & Barroso, I. M. (2004). Regresión logistica [Logisticregression]. Madrid, Spain: La Muralla/Hespérides.
  • Stanworth, J., Stanworth, C., Granger, B., & Blyth, S. (1989). Who becomes an entrepreneur? International Small Business Journal, 8, 11-22. http://dx.doi.org/10.1177/026624268900800101
  • Steensma, H. K., Marino, L., & Weaver, K. M. (2000). Attitudes toward cooperative strategies: A cross-cultural analysis of entrepreneurs. Journal of International Business Studies, 31, 591-609. http://dx.doi.org/10.1057/palgrave. jibs.8490924
  • Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R., & Selker, H. P. (2003). External validity of predictive models: A comparison of logistic regression, classification trees, and neural networks. Journal of Clinical Epidemiology, 56, 721-729. http://dx.doi.org/10.1016/S0895-356 (03) 00120-3 (Pubitemid 37040807)
  • Thompson, J. L. (2004). The facets of the entrepreneur: Indentifying entrepreneurial potential. Management Decision, 42, 243-258. http://dx.doi.org/10.1108/0025l740410515861 (Pubitemid 38334695)
  • Vails, F. (1996). Programa autoaplicable de asesoramiento vocacional [Self-applied program of vocational counseling]. Almeria, Spain: Editorial Universidad de Almeria.
  • Veciana, J. M. (1989). Caracteristicas del empresario en Espafia [Characteristics of the entrepreneur in Spain]. Papeles de Economia Espanola, 39, 19-36.
  • Veciana, J. M., Aponte, M., & Urbano, D. (2005). University students' attitudes towards entrepreneurship: A two countries comparison. International Entrepreneurship and Management Journal, I, 165-182. http://dx.doi.org/10.1007/s 11365-005-1127-5
  • Walker, S. H., & Duncan, D. B. (1967). Estimation of the probability of an event as function of several independent variables. Biometrika, 54, 167-179. http://dx.doi.org/10. 2307/2333860
  • Whittermore, A. S. (1981). Sample size for logistic regression with small response probability. Journal of American Statistical Association, 76, 27-32.
  • Zhao, L. P., & Kolonel, L. (1992). Efficiency loss from categorizing quantitative exposures into qualitative exposures in case-control studies. American Journal of Epidemiology, 136, 464-414.