Why scientific practices are not included in Science lessons?What does it go unnoticed for teachers

  1. M Rut Jiménez-Liso 1
  2. Ana Amat González 2
  3. María Martínez-Chico 1
  4. Jose Miguel Vilchez Gonzalez 2
  5. Rafael López-Gay Lucio-Villegas 1
  1. 1 Universidad de Almería
    info

    Universidad de Almería

    Almería, España

    ROR https://ror.org/003d3xx08

  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Aldizkaria:
UTE Teaching & Technology: Universitas Tarraconensis

ISSN: 1135-1438 2385-4731

Argitalpen urtea: 2019

Zenbakia: 2019

Orrialdeak: 20-32

Mota: Artikulua

DOI: 10.17345/UTE.2019.2.2615 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: UTE Teaching & Technology: Universitas Tarraconensis

Objetivos de desarrollo sostenible

Laburpena

Despite the importance that research gives to including scientific practices in science education, it reports a lack of effectiveness of the approaches adopted in science classrooms. The efforts made in promoting inquiry-based learning seem not to have been very successful, taking into consideration the current dissatisfaction with the inadequate interpretation of these approaches. This paper attempts to address the issue of the lack of proper scientific practices as shown in the results of a range of research projects and their implications for teacher training, by addressing the following issues: Reasons why the scientific practices are not included in science lessons; the purposes or advantages served by the use of scientific teaching practices in classrooms and how they influence the instruction; the importance of recognising emotions felt in science classrooms; and how to reach competent science teachers who know, not only how to introduce scientific practices properly in their instruction, but who also understand why such practices are necessary in relation to the epistemic knowledge. With the aim of making future teachers aware of the scientific practices advantages, we propose to promote the opportunity of experiencing the implementation of Model-Based Inquiry sequences with SENSe, SENSors, and SENSations, in their classes with their own students.

Erreferentzia bibliografikoak

  • Alsop, S., and Watts, M. (2003). Science education and affect. International Journal of Science Education, 25(9), 1043–1047. http://doi.org/10.1080/0950069032000052180
  • Ateş, Ö., and Eryilmaz, A. (2011). Effectiveness of hands-on and minds-on activities on students’ achievement and attitudes towards physics. Asia-Pacific Forum on Science Learning and Teaching, 12(1).
  • Boujaoude, S. B., and Jurdak, M. E. (2010). Integrating physics and math through microcomputer-based laboratories (MBL): Effects on discourse type, quality, and mathematization. International Journal of Science and Mathematics Education, 8(3), 1019–1047. http://doi.org/10.1007/s10763-010-9219-2
  • Confederación de Sociedades Científicas de España. (2011). Informe ENCIENDE: Enseñanza de las Ciencias en la Didáctica Escolar para Edades Tempranas en España. Madrid: Rubes Editorial.
  • Correia, M., and Freire, A. M. (2016). The influence of an in-service programme on primary teachers conceptions about practical work. Revista Electronica Interuniversitaria De Formacion Del Profesorado, 19(2), 259–272. http://doi.org/10.6018/reifop.19.2.254971
  • Couso, D., and Pintó, R. (2009). Análisis del contenido del discurso cooperativo de los profesores de ciencias en contextos de innovación didáctica. Enseñanza de Las Ciencias, 27(1), 5–18.
  • Dávila Acedo, M. A., Borrachero Cortés, A. B., Cañada Cañada, F., Martínez Borreguero, G., and Sánchez Martín, J. (2015). Evolución de las emociones que experimentan los estudiantes del grado de maestro en educación primaria, en didáctica de la materia y la energía. Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 12(3), 550–564. http://doi.org/10498/17609
  • Duschl, R. A., and Grandy, R. (2013). Two Views About Explicitly Teaching Nature of Science. Science & Education, 22(9), 2109–2139. http://doi.org/10.1007/s11191-012-9539-4
  • Ebenezer, J., Kaya, O. N., and Ebenezer, D. L. (2011). Engaging students in environmental research projects: Perceptions of fluency with innovative technologies and levels of scientific inquiry abilities. Journal of Research in Science Teaching, 48(1), 94–116. http://doi.org/10.1002/tea.20387
  • Evagorou, M., Nicolaou, C. T., and Lymbouridou, C. (2014). Elementary school students’ emotions and engagement: Using models and SSI as a context of instruction in Science. Journal of Research in Science Teaching.
  • Fried, L., Mansfield, C., and Dobozy, E. (2015). Teacher emotion research: Introducing a conceptual model to guide future research. Ssues in Educational Research, 25(4), 415–442.
  • Furtak, E. M., Seidel, T., Iverson, H., and Briggs, D. C. (2012). Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching: A Meta-Analysis. Review of Educational Research, 82(3), 300–329. http://doi.org/10.3102/0034654312457206
  • Haefner, L. A., and Zembal‐Saul, C. (2004). Learning by doing? Prospective elementary teachers’ developing understandings of scientific inquiry and science teaching and learning. International Journal of Science Education, 26(13), 1653–1674. http://doi.org/10.1080/0950069042000230709
  • Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinous, C. P., Deca, L., Grangeat, M., … Welzel-Breuer, M. (2015). Science Education for Responsible Citizenship. Directorate-General for Research and Innovation Science with and for Society. Retrieved from http://ec.europa.eu/research/swafs/pdf/pub_science_education/KI-NA-26-893-EN-N.pdf
  • Holstermann, N., Grube, D., and Bögeholz, S. (2010). Hands-on Activities and Their Influence on Students’ Interest. Research in Science Education, 40(5), 743–757. http://doi.org/10.1007/s11165-009-9142-0
  • Jiménez-Liso, M. R., Avraamidou, L., Martínez-Chico, M., and López-Gay, R. (2019). Scientific Practices in Teacher Education: The interplay of sense, sensors, and emotions. Research in Science & Technological Education, in press.
  • Jiménez-Liso, M. R., Martínez-Chico, M., and Salmerón-Sánchez, E. (2018). Chewing Gum and pH Level of the Mouth : A Model-based Inquiry Sequence to Promote Scientific Practices. World Journal of Chemical Education, 6(3). http://doi.org/10.12691/wjce-6-x-x
  • Jiménez-Liso, María Rut, Giménez-Caminero, E., Martínez-Chico, M., Castillo-Hernández, F. J., and López-Gay, R. (2019). El enfoque de enseñanza por indagación ayuda a diseñar secuencias : ¿Una rama es un ser vivo? In J. Solbes & M. R. Jiménez-Liso (Eds.), Propuestas de educación científica basadas en la indagación y modelización en contexto. Valencia: Tirant lo blanch.
  • Lee, O., Hart, J. E., Cuevas, P., and Enders, C. (2004). Professional development in inquiry-based science for elementary teachers of diverse student groups. Journal of Research in Science Teaching, 41(10), 1021–1043. http://doi.org/10.1002/tea.20037
  • Martínez-Chico, M., Evagorou, M., and Jiménez-Liso, M. R. (2019). Design of a pre-service teacher training unit to promote scientific practices. Is a chickpea a living being? International Journal of Desings for Learning, 10(1), in press.
  • Martínez-Chico, M., Jiménez-Liso, M. R., López-Gay, R., and Romero, M. (2018). Inquiry and modeling in pre-service teacher training to improve scientific, epistemic, pedagogical knowledge, and emotional self-regulation. In O. Finlayson, E. McLoughlin, S. Erduran, & P. Childs (Eds.), Research, Practice and Collaboration in Science Education (Proceedings of ESERA 2017) (pp. 1763–1772). Dublin, Ireland: Dublin City University. Retrieved from https://www.esera.org/publications/esera-conference-proceedings/esera-2017
  • Mellado Jiménez, V., Borrachero Cortés, A. B., Brígido Mero, M., Melo, L. V., Dávila Acedo, M. A., Cañada Cañada, F., … Sánchez, J. (2014). Las emociones en la enseñanza de las ciencias. Enseñanza de Las Ciencias, 32(3), 11–36. http://doi.org/10.5565/rev/ensciencias.1478
  • National Research Council. (2012). A Framework for K-12 Science Education. A Framework for K-12 Science Education: Practices, Croscutting Concepts, and Core Ideas. (Vol. 1). http://doi.org/10.17226/13165
  • National Research Council. (2015). Science Teachers’ Learning. (H. Schweingruber & N. Nielsen, Eds.). Washington, D.C.: National Academies Press. http://doi.org/10.17226/21836
  • Nicolaou, C. T., Evagorou, M., and Lymbouridou, C. (2015). Elementary School Students’ Emotions when Exploring an Authentic Socio-Scientific Issue through the Use of Models. Science Education International, 26(2), 240–259.
  • Osborne, J. (2014). Scientific Practices and Inquiry in the Science Classroom. In N. G. Lederman (Ed.), Handbook of Research on Science Education, Volume II (pp. 579–599). Mawah, NJ: Lawrence Erlbaum Associates Publishers. http://doi.org/10.4324/9780203097267.ch29
  • Pino Álvarez, A., Jiménez Valladares, J. de D., Jiménez Liso, M. R., and Sampedro Villasán, C. (2012). Experimenta, a science teacher training program in CBLIS. In International Conference on Computer Based Learning in Science (CBLIS) (pp. 58–66). Retrieved from http://cblis2012.crecim.cat/
  • Rocard, M., Csermely, P., Jorde, D., Walberg-Henriksson, H., and Hemmo, V. (2007). A Renewed Pedagogy for the Future of Europe (Report EU22-845, Brussels, 2007). (P. McLaren & J. Giarelly, Eds.). Directorate-General for Research Science, Economy and Society.
  • Thagard, P. (2008). Conceptual change in the history of science: life, mind and disease. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 374–387). New York: Routledge.