Trace element fractionation in water-bearing silicic magmas

  1. Carmen Rodríguez 1
  2. Antonio Castro 2
  3. Antonio Sánchez Navas 3
  1. 1 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

  2. 2 Instituto Andaluz de Ciencias de la Tierra
    info

    Instituto Andaluz de Ciencias de la Tierra

    Granada, España

    ROR https://ror.org/00v0g9w49

  3. 3 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 263-279

Tipo: Artículo

DOI: 10.1007/S41513-020-00153-W DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

La cristalización de una andesita hidratada dentro de una capa límite térmica a 500 MPa de presión se simula experimentalmente usando el gradiente térmico intrínseco en las cápsulas de 10 mm de longitud dentro de un piston-cylinder en posición horizontal. La solidificación del magma se programó con dos tasas de enfriamiento distintas, lenta (0.6 °C/hora) y rápida (9.6 °C/hora). Los análisis con ablación láser (LA-ICP-MS) a lo largo del gradiente térmico nos dan información acerca de la eficiencia de la fraccionación en elementos traza, para un enfriamiento lento, en el que los fluidos ricos en agua favorecen la movilidad de ciertos elementos. Las características composicionales y texturales de nuestros experimentos proporcionan nuevos avances sobre la cinética de la fraccionación de los elementos traza en magmas intermedios con agua. Estas características, junto con los irreales valores de difusión medidos en las cápsulas (cercanos a 10– 6 cm2s− 1), indican que los elementos incompatibles migran conjuntamente con una fase fluida rica en agua, expulsada desde un entramado rico en cristales o mush, a través del efecto filtro prensa asistido por gas. En el caso aquí estudiado, el transporte difusivo impuesto por el gradiente de concentración de los elementos químicos tiene lugar en el mismo sentido que el de tipo advectivo. Se propone que la segregación del líquido es particularmente efectiva en capas límite térmicas originadas en los márgenes de los conductos de ascenso o en las paredes de las cámaras magmáticas. El flujo de un fluido rico en elementos traza hacia áreas pobres en cristales y más calientes, en las zonas centrales o superiores de las cámaras magmáticas, dan como resultado una zonación composicional y, eventualmente, a la formación de cúpulas fraccionadas, lugares preferenciales para la generación de depósitos de menas.

Información de financiación

Financiadores

Referencias bibliográficas

  • Bachmann, O., & Huber, C. (2016). Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101(11), 2377–2404.
  • Barnes, C. G., Allen, C. M., & Saleeby, J. B. (1986). Open- and closedsystem characteristics of a tilted plutonic system, Klamath Mountains, California. Journal of Geophysical Research: Solid Earth, 91(B6), 6073–6090.
  • Bateman, P. C., & Chappell, B. W. (1979). Crystallization, fractionation, and solidification of the tuolumne intrusive series, Yosemite National Park, California. Geological Society of America Bulletin, 90, 465–482.
  • Bea, F., Pereira, M. D., & Stroh, A. (1994). Mineral/leucosome traceelement partitioning in a peraluminous migmatite (a laser ablation- ICP-MS study). Chemical Geology, 117(1–4), 291–312.
  • Bindeman, I. N., & Davis, A. M. (2000). Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta, 64(16), 2863–2878.
  • Bindeman, I. N., Lundstrom, C. C., Bopp, C., & Huang, F. (2013). Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks. Earth and Planetary Science Letters, 365, 51–62.
  • Bohlen, S. R., Boettcher, A. L., & Wall, V. J. (1982). The system albite-H2O-CO2: A model for melting and activities of water at high pressure. American Mineralogist, 67, 451–462.
  • Bonechi, B., Perinelli, C., & Gaeta, M. (2019). Clinopyroxene growth rates at high pressure: Constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy). Bulletin of Volcanology, 82(1), 5.
  • Boudreau, A. (2016). Bubble migration in a compacting crystal-liquid mush. Contributions to Mineralogy and Petrology, 171(4), 32.
  • Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth and Planetary Science Letters, 135(1–4), 1–11.
  • Burnham, C. W. (1979). The importance of volatile constituents. In H. S. J. Yoder (Ed.), The evolution of the igneous rocks (pp. 439– 482). Princeton: Princeton University Press.
  • Candela, P. A. (1997). A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38(12), 1619–1633.
  • Cloos, M. (2001). Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43(4), 285–311.
  • Coleman, D. S., Gray, W., & Glazner, A. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite California. Geology, 32(5), 433–436.
  • Coleman, D. S., Bartley, J. M., Glazner, A. F., & Pardue, M. J. (2012). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere, 8(6), 1568–1587.
  • Conte, A. M., Perinelli, C., & Trigila, R. (2006). Cooling kinetics experiments on different Stromboli lavas: Effects on crystal morphologies and phases composition. Journal of Volcanology and Geothermal Research, 155(3), 179–200.
  • Courrioux, G. (1987). Oblique diapirism: The Criffel granodiorite/ granite zoned pluton (southwest Scotland). Journal of Structural Geology, 9(3), 313–330.
  • Deering, C. D., & Bachmann, O. (2010). Trace element indicators of crystal accumulation in silicic igneous rocks. Earth and Planetary Science Letters, 297(1–2), 324–331.
  • Flanagan, F. J. (1967). US geological survey silicate rock standards. Geochimica et Cosmochimica Acta, 31, 289–308
  • Ghiorso, M. S., & Gualda, G. A. R. (2015). An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169(6), 1–30.
  • Glazner, A. F., Coleman, D. S., & Bartley, J. M. (2008). The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology, 36(2), 183–186.
  • Hartung, E., Caricchi, L., Floess, D., Wallis, S., Harayama, S., Kouzmanov, K., & Chiaradia, M. (2017). Evidence for residual melt extraction in the Takidani Pluton, Central Japan. Journal of Petrology, 58(4), 763–788.
  • Hartung, E., Weber, G., & Caricchi, L. (2019). The role of H2O on the extraction of melt from crystallising magmas. Earth and Planetary Science Letters, 508, 85–96.
  • Henderson, P. (1986). Inorganic geochemistry (p. 353). Oxford: Pergamon Press.
  • Hildreth, W. (1979). The bishop tuff: Evidence for the origin of compositional zoning in silicic magma chambers. Geological Society of America, Special Paper, 180, 43–75.
  • Hildreth, W. (1981). Gradients in silicic magma chambers: Implication for lithospheric magmatism. Journal of Geophysical Research, 86(B11), 10153–10192.
  • Hill, E., Wood, B. J., & Blundy, J. D. (2000). The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos, 53(3–4), 203–215.
  • Huang, F., Lundstrom, C. C., Glessner, J., Ianno, A., Boudreau, A., Li, J., et al. (2009). Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica et Cosmochimica Acta, 73(3), 729–749.
  • Huber, C., Bachmann, O., Vigneresse, J. L., Dufek, J., & Parmigiani, A. (2012). A physical model for metal extraction and transport in shallow magmatic systems. Geochemistry, Geophysics, Geosystems, 13(8), 2.
  • Jochum, K. P., & Nohl, U. (2008). Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology, 253(1–2), 50–53.
  • Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., et al. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429.
  • Koepke, J., & Behrens, H. (2001). Trace element diffusion in andesitic melts: An application of synchrotron X-ray fluorescence analysis. Geochimica et Cosmochimica Acta, 65(9), 1481–1498.
  • Langmuir, C. H. (1989). Geochemical consequences of In situ crystallization. Nature, 340, 199–205.
  • Lipman, P. W. (2007). Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3, 42–70.
  • Lipman, P. W., & Bachmann, O. (2015). Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere, 11(3), 705–743.
  • Mahood, G., & Hildreth, W. (1983). Large partition coefficients for elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 11–30.
  • Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D., & Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1–4), 282–299.
  • Moore, G., Roggensack, K., & Klonowski, S. (2008). A low-pressure– high-temperature technique for the piston-cylinder. American Mineralogist, 93, 48–52.
  • Mustard, R. (2004). Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales*. Australian Journal of Earth Sciences, 51(3), 385–405.
  • Mustard, R., Ulrich, T., Kamenetsky, V. S., & Mernagh, T. (2006). Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology, 34(2), 85–88.
  • Nishimura, K., & Yanagi, T. (2000). In situ crystallization observed in the Osumi granodiorite batholith. Earth and Planetary Science Letters, 180(1–2), 185–199.
  • Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O., & Su, Y. (2016). Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature, 532, 492–495.
  • Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., & Bachmann, O. (2017). The mechanics of shallow magma reservoir outgassing. Geochemistry, Geophysics, Geosystems, 18(8), 2887–2905.
  • Patiño Douce, A. E., & Beard, J. S. (1994). H2O loss from hydrous melts during fluid-absent piston cylinder experiments. American Mineralogist, 79, 585–588.
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.
  • Pistone, M., Arzilli, F., Dobson, K. J., Cordonnier, B., Reusser, E., Ulmer, P., et al. (2015). Gas-driven filter pressing in magmas: Insights into in-situ melt segregation from crystal mushes. Geology, 43(8), 699–702.
  • Rodríguez, C., & Castro, A. (2017). Silicic magma differentiation in ascent conduits. Experimental constraints. Lithos, 272–273, 261–277.
  • Rodríguez, C., Geyer, A., Castro, A., & Villaseñor, A. (2015). Natural equivalents of thermal gradient experiments. Journal of Volcanology and Geothermal Research, 298, 47–58.
  • Seaman, S., Gylling, H., Hogan, J., Karner, F., & Koteas, G. C. (2011). Concentric zoning in the Tunk Lake pluton, coastal Maine. Contributions to Mineralogy and Petrology, 162(6), 1291–1314.
  • Shaw, S. E., & Flood, R. H. (2009). Zircon Hf isotopic evidence for mixing of crustal and silicic mantle-derived magmas in a zoned Granite Pluton, Eastern Australia. Journal of Petrology, 50(1), 147–168.
  • Silver, L., & Stolper, E. (1989). Water in albitic glasses. Journal of Petrology, 30(3), 667–709.
  • Silver, L. A., Ihinger, P. D., & Stolper, E. (1990). The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 101, 142–162.
  • Sisson, T. W., & Bacon, C. R. (1999). Gas-driven filter pressing in magmas. Geology, 27, 613–616.
  • Srogi, L., & Lutz, T. M. (1996). The role of residual melt migration in producing compositional diversity in a suite of granitic rocks. Earth and planetary science letters, 144(3–4), 563–576.
  • Stephens, W. E., & Halliday, A. N. (1980). Discontinuities in the composition surface of a zoned pluton, Criffell, Scotland. Geological Society of America Bulletin, 91, 165–170.
  • Stolper, E. (1982). Water in silicate glasses: An infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81(1), 1–17.
  • Truckenbrodt, J., & Johannes, W. (1999). H2O loss during pistoncylinder experiments. American Mineralogist, 84, 1333–1335.
  • Vance, J. A. (1961). Zoned granitic intrusions—An alternative hypothesis of origin. Geological Society of America Bulletin, 72, 1723–1728.
  • Vigneresse, J. L., & Bouchez, J. L. (1997). Successive granitic magma batches during pluton emplacement: The case of Cabeza de Araya (Spain). Journal of Petrology, 38(12), 1767–1776.
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187.
  • Zhang, Y., Ni, H., & Chen, Y. (2010). Diffusion data in silicate melts. Reviews in Mineralogy and Geochemistry, 72(1), 311–408.