Geochemical and Sr–Nd isotopic constraints on the petrogenesis of the Tiflet granitoids, Northwestern Moroccan Mesetageological implications

  1. Hind El Haïbi 1
  2. Hassan El Hadi 1
  3. Alfonso Pesquera 2
  4. Abdelfatah Tahiri 3
  5. David Martínez Poyatos 4
  6. Ghalem Zahour 1
  7. Sakina Mehdioui 1
  8. Mounia Tahiri 5
  1. 1 Université Hassan II de Casablanca
    info

    Université Hassan II de Casablanca

    Casablanca, Marruecos

    ROR https://ror.org/001q4kn48

  2. 2 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  3. 3 Mohammed V University in Rabat
  4. 4 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  5. 5 Cadi Ayyad University
    info

    Cadi Ayyad University

    Marrakech, Marruecos

    ROR https://ror.org/04xf6nm78

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Ano de publicación: 2021

Título do exemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volume: 47

Número: 1-2

Páxinas: 347-365

Tipo: Artigo

DOI: 10.1007/S41513-020-00156-7 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Journal of iberian geology: an international publication of earth sciences

Resumo

El orógeno Varisco de Marruecos presenta numerosos pequeños cuerpos magmáticos félsicos del Neoproterozoico superior. Los granitoides de Tiflet (Meseta noroccidental de Marruecos) constan de dos cuerpos lenticulares (Taïcha y Sidi BouJemaa) de composición granodiorítica y una edad U–Pb en circones de 609 Ma, que afloran en el corredor BouRegreg de la Meseta septentrional de Marruecos. Ambos granitoides son de tendencia magnesiana y calco-alcalina, mostrando principalmente una afinidad peralumínica pero con una asociación mineral típica de granitoides tipo-I. Las variaciones de los elementos principales reflejan un mayor grado de evolución para Sidi BouJemaa que para el granitoide Taïcha, pero no hay evidencia clara de que estén relacionados por procesos de fraccionamiento. Altas proporciones de (CaO/Na2O), valores bajos de Al2O3/( FeO + MgO + TiO2) y ( Na2O + K2O)/(FeO + MgO + TiO2), junto con relaciones87Sr/ 86Sr iniciales relativamente bajas (0,7054 a 0,7108) y valores negativos de εNd (t) (− 6,52 a − 8,45), indican queestos granitoides pueden haber tenido una fuente predominantemente metaígnea en la corteza inferior o mezclas de corteza continental y litosfera subcontinental, presumiblemente del basamento paleoproterozoico. Espectros de tierras raras con un fraccionamiento LREE/HREE elevado, anomalías bajas en Eu y espectros planos desde el Er hasta el Lu son típicos de granitoides sincolisionales. Por el contrario, los granitoides HKCA postcolisionales están relacionados con un régimen tectónico transtensional, con relaciones 87Sr/86Sr bajas y 143Nd/142Nd altas, que indican una importante contribución del manto.

Información de financiamento

Financiadores

Referencias bibliográficas

  • Baudin, T., Chèvremont, P., Razin, P., Youbi, N., Andriès, D., Hoepffner, C., et al. (2003). Carte géologique du Maroc au 1/50,000, feuille de Skhour des Rehamna. Mémoire explicatif. Notes et Mémoires du service géologique du Maroc, 435, 1–114.
  • Bea, F., Fershtater, G. B., Montero, P., Smirnov, V. N., & Zin’kova, E. (1997). Generation and evolution of subduction-related batholiths from the central Urals: Constraints on the P-T history of the Uralian orogen. Tectonophysics, 276, 103–117.
  • Beraaouz, E. H., Ikenne, M., Mortaji, A., Madi, A., Lahmam, M., & Gasquet, D. (2004). Neoproterozoic granitoids associated with the Bou-Azzer ophiolitic melange (Anti-Atlas, Morocco): evidence of adakitic magmatism in an arc segment at the NW edge of the West-African craton. Journal of African Earth Sciences, 39(3–5), 285–293. https ://doi.org/10.1016/j.jafre arsci .2004.07.040.
  • Casas, J. M., Navidad, M., Castiñeiras, P., Liesa, M., Aguilar, C., Carreras, J., et al. (2014). The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: New ages and isotope geochemistry. International Journal of Earth Sciences (Geologishe Rundschau). https ://doi.org/10.1007/s0053 1-014-1127-1.
  • Chappell, B. W., & White, A. J. R. (1992). I- and S-type granites in the Lachlan fold belt. Transactions of the royal society of Edinburgh. Earth and Environmental Science, 83, 1–26. https ://doi. org/10.1017/S0263 59330 00077 20.
  • Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489–499. https ://doi.org/10.1046/j.1440-0952.2001.00882 .x.
  • Charlot, R., Rhalib, M., & Tisserant, D. (1973). Etude géochronologique préliminaire des granites de la région de Rabat-Tiflet (Maroc occidental). Notes et mémoires du service géologique du Maroc, 249, 55–58.
  • Clemens, J. D., Stevens, G., & Farina, F. (2011). The enigmatic sources of I-type granites: The peritectic connexion. Lithos, 126, 174–181.
  • De Paolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and crust; Mantle evolution in the Proterozoic. Nature, 291, 193–196.
  • Domenick, M. A., Kistler, R. W., Dodge, F. C. W., & Mitsunobu, T. (1983). Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. Geological Society of America Bulletin, 94, 713–719.
  • Dong, S., Gao, R., Yin, A., Guo, T., Zhang, Y., Hu, J., & Li, Q. (2013). What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China. Geology, 41(6), 671–674. https ://doi.org/10.1130/g3416 1.1.
  • El Hadi, H., Simancas, J. F., Martinez-Poyatos, D., Azor, A., Tahiri, A., Montero, P., et al. (2010). Structural and geochronological constraints on the evolution of the BouAzzer Neoproterozoic ophiolite (Anti-Atlas, Morocco). Precambrian Research., 182, 1–14.
  • El Haïbi, H., EL Hadi, H., Tahiri, A., Martinez Poyatos, D.J., Pérez- Cáceres, I. (2017). New U/Pb ages of the calc-alkaline felsic volcanism of El Jadida (Moroccan Coastal Block). Proceedings of the 2nd Colloquium of the International Geoscience Program (IGCP638), Casablanca, Morocco, 07–12 November 2017. p 41
  • El Haïbi, H., El Hadi, H., Tahiri, A., Martínez Poyatos, J. D., Gasquet, D., Pérez-Cáceres, I., et al. (2019). Geochronology and isotopic geochemistry of Ediacaran high-K calc-alkaline felsic volcanism: An example of a Moroccan perigondwanan (Avalonian?) remnant in the El Jadida horst (Mazagonia). Journal of African Earth Sciences. https ://doi.org/10.1016/j.jafre arsci .2019.10366 9.
  • El Hassani, A. (1991). La zone de Rabat – Tiflet. Bordure Nord de la chaine calédono- hercynienne du Maroc. Bulletin de l’Institut Scientifique de Rabat, 15, 1–134.
  • El Houicha, M., Pereira, M. F., Jouhari, A., Gama, C., Ennih, N., Fekkak, A., et al. (2018). Recycling of the Proterozoic crystalline basement in the Coastal Block (Moroccan Meseta): New insights for understanding the geodynamic evolution of the northern peri-Gondwanan realm. Precambrian Research. https ://doi. org/10.1016/j.preca mres.2017.12.039.
  • Ennih, N., & Liégeois, J. P. (2008). The boundaries of the West African Craton, with special reference to the basement of the Moroccan met a cratonic Anti-Atlas belt. Geological Society, London, Special Publications, 297, 1–17.
  • Errami, E., Bonin, B., Laduron, D., & Lasri, L. (2009). Petrology and geodynamic significance of the post-collisional Pan-African magmatism in the Eastern Saghro area (Anti-Atlas, Morocco). Journal of African Earth Sciences, 55(1–2), 105–124. https ://doi. org/10.1016/j.jafre arsci .2009.02.006.
  • Evensen, N. M., Hamilton, P. J., & O’Nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochimica Cosmochimica Acta, 42, 1199–1212.
  • Fiannacca, P., Williams, I. S., Cirrincione, R., & Pezzino, A. (2013). The augen gneisses of the Peloritani Mountains (NE Sicily): Granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Research, 23, 782–796. https ://doi.org/10.1016/j.gr.2012.05.019.
  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033–2048. https ://doi. org/10.1093/petro logy/42.11.2033.
  • Green, H. T. (1995). Significance of Nb/ Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120, 347–359.
  • Hodel, F., Triantafyllou, A., Berger, J., Macouin, M., Baele, J. M., Mattielli, N., et al. (2020). The Moroccan Anti-Atlas ophiolites; Timing and melting processes in an intraoceanic arc-back-arc environment. Gondwana Research, 86, 182–202.
  • Hoepffner, C., Soulaimani, A., & Piqué, A. (2005). The Moroccan Hercynides. Journal of African Earth Sciences, 43(1–3), 144–165. https ://doi.org/10.1016/j.jafre arsci .2005.09.002.
  • Hoepffner, C., Houari, M. R., & Bouabdelli, M. (2006). Tectonics of the North African Variscides (Morocco, western Algeria): an outline. Comptes Rendus Geoscience, 338(1–2), 25–40. https ://doi. org/10.1016/j.crte.2005.11.003.
  • Iles, K. A., Hergt, J. M., Woodhead, J. D., Ickert, R. B., & Williams, I. S. (2019). Petrogenesis of granitoids from the Lachlan Fold Belt, southeastern Australia: the role of disequilibrium melting. Gondwana Research. https ://doi.org/10.1016/j.gr.2019.08.011.
  • Inglis, J. D., MacLean, J. S., Samson, S. D., D’Lemos, R. S., Admou, H., & Hefferan, K. (2004). A precise U-Pb zircon age for the Bleida granodiorite, Anti-Atlas, Morocco: implications for the timing of deformation and terrane assembly in the eastern Anti- Atlas. Journal of African Earth Science, 39, 277–283.
  • Izart, A. (1990). Dynamique des corps sédimentaires clastiques dans les bassins carbonifères de la Meseta marocaine. Mémoire d’habilitation, Université de Bourgogne, consultable à I’université de Bourgogne. Dijon. 357 p.
  • Jung, S., & Pfänder, J. A. (2007). Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/ TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6), 859–870.
  • Lameyre, J., & Bowden, P. (1982). Plutonic rock types series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14(1–2), 169–186. https ://doi.org/10.1016/0377-0273(82)90047 -6.
  • Large, R. R., Mcphie, G., Bruce-Gemmell, J., Herrmann, W., & Davidson, G. (2001). The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: Some examples from Australia. Economic Geology, 96, 913–938.
  • Leblanc, M., & Lancelot, J. R. (1980). Interprétation géodynamique du domaine panafricain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences, 17(1), 142–155. https ://doi. org/10.1139/e80-012.
  • Letsch, D., El Houicha, M., Von Quadt, A., & Winkler, W. (2017). A missing link in the peri-Gondwanan terrane collage: the Precambrian basement of the Moroccan meseta and its lower paleazoic cover. Canadian Journal of earth sciences, 55(1), 33–51. https :// doi.org/10.1139/cjes-2017-0086.
  • Liégeois, J. P., Navez, J., Hertogen, J., & Black, R. (1998). Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45(1–4), 1–28. https ://doi.org/10.1016/s0024 -4937(98)00023 -1.
  • Liew, T. C., & Hofmann, A. W. (1988). Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98, 129–138.
  • Li, W., Beard, B. L., Li, C., Xu, H., & Johnson, C. M. (2015). Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochimica et Cosmochimica Acta, 157, 164–181. https ://doi.org/10.1016/j. gca.2015.02.024.
  • Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.
  • McCulloch, M. T., & Chappell, B. W. (1982). Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters, 58, 51–64.
  • Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E. C., & Saddiqi, O. (2010). The south-western branch of the variscan belt: Evidence from Morocco. Tectonophysics, 492(1–4), 1–24. https ://doi.org/10.1016/j.tecto .2010.05.021.
  • Miller, C. D. (1985). Holocene eruptions at the Inyo volcanic chain. California: implications for possible eruptions in Long Valley. Geology, 13, 14–17.
  • Miller, C. F., Mcdowell, S. M., & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6), 529. https ://doi. org/10.1130/0091-7613(2003)031%3c052 9:hacgi o%3e2.0.co;2.
  • Montero, P., & Bea, F. (1998). Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta, 358, 227–233.
  • Ouabid, M., Ouali, H., Garrido, C. J., Acosta-Vigil, A., Román-Alpiste, M. J., Dautria, J. M., et al. (2017). Neoproterozoic granitoids in the basement of the Moroccan Central Meseta: Correlation with the Anti-Atlas at the NW paleo-margin of Gondwana. Precambrian Research, 299, 34–57. https ://doi.org/10.1016/j. preca mres.%20201 7.07.007.
  • Ouanaimi, H., Soulaimani, A., Hoepffner, C., Michard, A., & Baidder, L. (2016). The Atlas-Meseta Red Beds basin (Morocco) and the Lower Ordovician rifting of NW-Gondwana. Bulletin de La Société Géologique de France, 187(3), 155–168. https ://doi. org/10.2113/gssgf bull.187.3.155.
  • Patiño Douce, A.E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Castro, A., Fernandez. C. Vigneresse, J.L. (eds.) Understanding Granites. Integrating New and Classical Techniques. Special Publications, Geological Society, London, 168, 55–75.
  • Pearce, J. A. (1996). Sources and settings of granititic rocks. Episode, 19(4), 120–125.
  • Pereira, M. F., El Houicha, M., Chichorro, M., Armstrong, R., Jouhari, A., El Attari, A., et al. (2015). Evidence of a Paleoproterozoic basement in the Moroccan Variscan Belt (Rehamna Massif, Western Meseta). Precambrian Research, 268, 61–73.
  • Pereira, M. F., Chichorro, M., Williams, I. S., & Silva, J. B. (2016). Zircon U-Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a palaeogeographical link between the Ossa-Morena Ediacaran basins and the West African craton. The Geological Society of London, Special Publications, 297, 385–408.
  • Piqué, A. (1989). Variscan terranes in Morocco. Geological Society of America, Special Paper, 230, 115–129.
  • René, M. (2016). Source compositions and melting temperatures of the main granitic suites from the Moldanubian Batholith. Journal of Geosciences, 61, 355–370.
  • Rogers, G., & Hawkesworth, C. J. (1989). A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91(3–4), 271–285. https ://doi.org/10.1016/0012-821x(89)90003 -4.
  • Rubio-Ordónez, A., Gutiérrez-Alonso, G., Valverde-Vaquero, P., Cuesta, A., Gallastegui, G., Gerdes, A., & Cárdenes, V. (2013). Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from northern Iberia. Gondwana Research. https ://doi.org/10.1016/j. gr.2013.09.016.
  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.
  • Shand, S. J. (1927). On the Relations between Silica, Alumina, and the Bases in Eruptive Rocks, considered as a Means of Classification. Geological Magazine, 64(10), 446. https ://doi.org/10.1017/s0016 75680 01037 60.
  • Streckeisen, A. L. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12, 1–32.
  • Sylvester, R. J. (1998). Postcollisional strongly peraluminous granites. Lithos, 45, 29–44.
  • Tahiri, A., Montero, P., El Hadi, H., Martínez Poyatos, D., Azor, A., Bea, F., et al. (2010). Geochronological data on the Rabat Tiflet granitoids: their bearing on the tectonics of the Moroccan Variscides. Journal of African Earth Sciences, 57, 1–13.
  • Toummite, A., Liégeois, J. P., Gasquet, D., Bruguier, O., Beraaouz, E. H., & Ikenne, M. (2013). Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting. Mineralogy and Petrology, 107, 739–763.
  • Triantafyllou, A., Berger, J., Baele, J. M., Bruguier, O., Diot, H., Ennih, N., et al. (2018). Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Research, 304, 39–63.
  • Tullis, J., & Yund, R. A. (1977). Experimental deformation of dry westerly granite. Journal of Geophysical Research, 82(36), 5705– 5718. https ://doi.org/10.1029/jb082 i036p 05705 .
  • Walsh, G. J., Benzianeb, F., Aleinikoff, J. N., Harrisond, R. W., Yazidi, A., Burtond, W. C., et al. (2012). Neoproterozoic tectonic evolution of the Jebel Saghro and BouAzzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216– 219, 23–62.
  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.
  • White, A. J. R., & Chappell, B. W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America, 159, 21–34.
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.