Long-term organic farming on a citrus plantation results in soil organic carbon recovery

  1. A. Novara 1
  2. M. Pulido 2
  3. J. Rodrigo-Comino 3
  4. S. Di Prima 4
  5. P. Smith 5
  6. L. Gristina 1
  7. A. Gimenez-Morera 6
  8. E. Terol 6
  9. D. Salesa 7
  10. S. Keesstra 8
  1. 1 University of Palermo
    info

    University of Palermo

    Palermo, Italia

    ROR https://ror.org/044k9ta02

  2. 2 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

  3. 3 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

  4. 4 University of Lyon System
    info

    University of Lyon System

    Lyon, Francia

    ROR https://ror.org/01rk35k63

  5. 5 University of Aberdeen
    info

    University of Aberdeen

    Aberdeen, Reino Unido

    ROR https://ror.org/016476m91

  6. 6 Universitat Politècnica de València, España
  7. 7 Universitat de València, España
  8. 8 Wageningen University Research, The Netherlands; The University of Newcastle, Australia
Revista:
Cuadernos de investigación geográfica: Geographical Research Letters

ISSN: 0211-6820 1697-9540

Any de publicació: 2019

Volum: 45

Número: 1

Pàgines: 271-286

Tipus: Article

DOI: 10.18172/CIG.3794 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Altres publicacions en: Cuadernos de investigación geográfica: Geographical Research Letters

Objectius de Desenvolupament Sostenible

Resum

It has been shown that soil management under organic farming can enhance soil organic carbon, thereby mitigating atmospheric greenhouse gas increases, but until now quantitative evaluations based on long term experiments are scarce, especially under Mediterranean conditions. Changes in soil organic carbon (SOC) content were examined in response to organic management with cover crops in a Mediterranean citrus plantation using 21 years of survey data. Soil organic carbon increase was more apparent 5 years after a land management change suggesting that, for citrus plantations on Mediterranean conditions, studies should be longer than five years in duration. Soil organic carbon sequestration rate did not significantly change during the 21 years of observation, with values ranging from -1.10 Mg C ha-1 y-1 to 1.89 Mg C ha-1 y-1. After 21 years, 61 Mg CO2 ha-1 were sequestered in long-lived soil C pools. These findings demonstrate that organic management is an effective strategy to restore or increase SOC content in Mediterranean citrus systems.

Informació de finançament

This research was funded by the European Union Seventh Framework Program (FP7/2007-2013) under grant no. 603498 (RECARE Project) and the research projects GL2008-02879/BTE and LEDDRA 243857.

Finançadors

Referències bibliogràfiques

  • Adams, W.A. 1973. The Effect of Organic Matter on the Bulk and True Densities of Some Uncultivated Podzolic Soils. Journal of Soil Science 24 (1), 10-17. https://doi. org/10.1111/j.1365-2389.1973.tb00737.x.
  • Álvaro-Fuentes, J., Plaza-Bonilla, D., Arrúe, J.L., Lampurlanés, J., Cantero-Martínez, C. 2014. Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil 376 (1), 31-41. https://doi.org/10.1007/s11104-012-1167-x.
  • Argyropoulos, C., Tsiafouli, M.A., Sgardelis, S.P., Pantis, J.D. 2013. Organic farming without organic products. Land Use Policy 32, 324-328. https://doi.org/10.1016/j. landusepol.2012.11.008.
  • Averill, C., Turner, B.L., Finzi, A.C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505 (7484), 543-545. https://doi.org/10.1038/nature12901.
  • Benbrook, C., McCullum-Gómez, C. 2009. Organic vs Conventional Farming. Journal of the Academy of Nutrition and Dietetics 109 (5), 811. https://doi.org/10.1016/j.jada.2009.03.019.
  • Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., Ekelund, F., Fließbach, A., Gunst, L., Hedlund, K., Mäder, P., Mikola, J., Robin, C., Setälä, H., Tatin-Froux, F., Van der Putten, W.H., Scheu, S. 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry 40 (9), 2297-2308 https://doi.org/10.1016/j. soilbio.2008.05.007.
  • Borrelli, P., Paustian, K., Panagos, P., Jones, A., Schütt, B., Lugato, E. 2016. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land Use Policy 50, 408-421 https://doi.org/10.1016/j.landusepol.2015.09.033.
  • Bowles, T.M., Acosta-Martínez, V., Calderón, F., Jackson, L.E. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry 68, 252-262. https://doi.org/10.1016/j.soilbio.2013.10.004.
  • Catalán, N., Marcé, R., Kothawala, D.N., Tranvik, L.J. 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nature Geoscience 9 (7), 501-504 https://doi.org/10.1038/ngeo2720.
  • Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34 (13), 1822-1830. https://doi.org/10.1002/esp.1889.
  • Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E.C., Vaezi, A.R., Pulido, M., Giménez-Morera, A., Keesstra, S.D. 2018a. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment 42 (2), 202-219. https://doi.org/10.1177/0309133318758521.
  • Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Novara, A., Pulido, M., Kapović-Solomun, M., Keesstra, S.D. 2018b. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 75, 734-745. https://doi.org/10.1016/j. landusepol.2017.12.052.
  • Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Keesstra, S.D. 2018c. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agriculture, Ecosystems & Environment 258, 49-58. https://doi.org/10.1016/j.agee.2018.02.015.
  • Crittenden, S.J., Eswaramurthy, T., de Goede, R.G.M., Brussaard, L., Pulleman, M.M. 2014. Effect of tillage on earthworms over short- and medium-term in conventional and organic farming. Applied Soil Ecology 83, 140-148 https://doi.org/10.1016/j.apsoil.2014.03.001.
  • Crowder, D.W., Northfield, T.D., Strand, M.R., Snyder, W.E. 2010. Organic agriculture promotes evenness and natural pest control. Nature 466 (7302), 109-112. https://doi.org/10.1038/nature09183.
  • Davidson, E.A., Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (7081), 165-173. https://doi.org/10.1038/nature04514.
  • Di Prima, S., Rodrigo-Comino, J., Novara, A., Iovino, M., Pirastru, M., Keesstra, S., Cerdà, A. 2018. Soil Physical Quality of Citrus Orchards Under Tillage, Herbicide, and Organic Managements. Pedosphere 28 (3), 463-477 https://doi.org/10.1016/S1002-0160(18)60025-6.
  • Ellert, B.H., Bettany, J.R. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 75 (4), 529-538. https://doi.org/10.4141/cjss95-075.
  • Fließbach, A., Oberholzer, H-R., Gunst, L., Mäder, P. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment 118 (1), 273-284. https://doi.org/10.1016/j.agee.2006.05.022.
  • Fujisaki, K., Perrin, A-S., Desjardins, T., Bernoux, M., Balbino, L.C., Brossard, M. 2015. From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Global Change Biology 21 (7), 2773-2786. https://doi.org/10.1111/gcb.12906.
  • Fuller, R., Norton, L., Feber, R., Johnson, P., Chamberlain, D., Joys, A., Mathews, F., Stuart, R., Townsend, M., Manley, W., et al. 2005. Benefits of organic farming to biodiversity vary among taxa. Biology Letters 1 (4), 431-434. https://doi.org/10.1098/rsbl.2005.0357.
  • Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P., Stolze, M., Smith, P., El Hage Scialabba, N., Niggli, U. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences 109 (44), 18226-18231. https://doi.org/10.1073/pnas.1209429109.
  • Glover, J.D., Reganold, J.P., Andrews, P.K. 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agriculture, Ecosystems & Environment 80 (1), 29-45. https://doi.org/10.1016/S0167-8809(00)00131-6.
  • Gruber, N., Galloway, J.N. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451 (7176), 293-296. https://doi.org/10.1038/nature06592.
  • Hole, D.G., Perkins, A.J., Wilson, J.D., Alexander, I.H., Grice, P.V., Evans, A.D. 2005. Does organic farming benefit biodiversity? Biological Conservation 122 (1), 113-130. https://doi. org/10.1016/j.biocon.2004.07.018.
  • Hondebrink, M.A., Cammeraat, L.H., Cerdà, A. 2017. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation. Science of The Total Environment 581, 153-160. https://doi.org/10.1016/j.scitotenv.2016.12.087.
  • Hueso-González, P., Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2017. Benefits of straw and pinus mulch as forest management practices in Mediterranean forests. Cuadernos de Investigación Geográfica 43 (1), 189-208. https://doi.org/10.18172/cig.3142.
  • Kapović Solomun, M, Barger, N., Cerda, A., Keesstra, S., Marković, M. 2018. Assessing land condition as a first step to achieving land degradation neutrality: A case study of the Republic of Srpska. Environmental Science & Policy 90, 19-27. https://doi.org/10.1016/j. envsci.2018.09.014.
  • Keesstra, S., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der Putten, W.H., et al. 2016a. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2 (2), 111-128. https://doi.org/10.5194/soil-2-111-2016.
  • Keesstra, S., Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., Cerdà, A. 2016b. Effects of soil management techniques on soil water erosion in apricot orchards. Science of The Total Environment 551-552, 357-366. https://doi.org/10.1016/j. scitotenv.2016.01.182.
  • Keesstra, S., Mol, G., de Leeuw, J., Okx, J., Molenaar, C., de Cleen, M., Visser, S. 2018. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 7 (4), 133. https://doi.org/10.3390/land7040133.
  • Keesstra, S., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S., Cerdà, A. 2019. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 174, 95-103. https://doi.org/10.1016/j. catena.2018.11.007.
  • Khaleel, R., Reddy, K.R., Overcash, M.R. 1981. Changes in Soil Physical Properties Due to Organic Waste Applications: A Review 1. Journal of Environmental Quality 10 (2), 133-141. https://doi.org/10.2134/jeq1981.00472425001000020002x.
  • Kirchhoff, M., Rodrigo-Comino, J., Seeger, M., Ries, J.B. 2017. Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 43 (1), 119-140 https://doi.org/10.18172/cig.3161.
  • Kushwaha, C.P., Tripathi, S.K., Singh, K.P. 2001. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology 16 (3), 229-241. https://doi.org/10.1016/S0929-1393(00)00121-9.
  • Lana-Renault, N., López-Vicente, M., Nadal-Romero, E., Ojanguren, R., Llorente, J.A., Errea, P., Regués, D., Ruiz-Flaño, P., Khorchani, M., Arnáez, J., et al. 2018. Catchment based hydrology under post farmland abandonment scenarios. Cuadernos de Investigación Geográfica 44 (2), 503-534. https://doi.org/10.18172/cig.3475.
  • Lehmann, J., Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528 (7580), 60-68. https://doi.org/10.1038/nature16069.
  • Liebig, M.A., Doran, J.W. 1999. Impact of Organic Production Practices on Soil Quality Indicators. Journal of Environmental Quality 28 (5), 1601-1609. https://doi.org/10.2134/jeq1999.00472425002800050026x.
  • Lugato, E., Panagos, P., Bampa, F., Jones, A., Montanarella, L. 2014. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology 20 (1), 313-326. https://doi.org/10.1111/gcb.12292.
  • Macilwain, C. 2004. Organic: Is it the future of farming? Nature 428, 792-793. https://doi. org/10.1038/428792a.
  • Maeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. 2002. Soil Fertility and Biodiversity in Organic Farming. Science 296 (5573), 1694-1697 https://doi.org/10.1126/science.1071148.
  • Marinari, S., Mancinelli, R., Campiglia, E., Grego, S. 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators 6 (4), 701-711. https://doi.org/10.1016/j.ecolind.2005.08.029.
  • Michelsen, J. 2001. Recent Development and Political Acceptance of Organic Farming in Europe. Sociologia Ruralis 41 (1), 3-20. https://doi.org/10.1111/1467-9523.00167.
  • Montanaro, G., Xiloyannis, C., Nuzzo, V., Dichio, B. 2017. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Scientia Horticulturae 217, 92-101. https://doi.org/10.1016/j.scienta.2017.01.012.
  • Norton, L., Johnson, P., Joys, A., Stuart, R., Chamberlain, D., Feber, R., Firbank, L., Manley, W., Wolfe, M., Hart, B., Mathews, F., Macdonald, D., Fuller, R.J. 2009. Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agriculture, Ecosystems & Environment 129 (1), 221-227. https://doi.org/10.1016/j.agee.2008.09.002.
  • Novara, A., Poma, I., Sarno, M., Venezia, G., Gristina, L. 2016. Long-Term Durum Wheat-Based Cropping Systems Result in the Rapid Saturation of Soil Carbon in the Mediterranean Semi-arid Environment. Land Degradation & Development 27 (3), 612-619. https://doi. org/10.1002/ldr.2468.
  • Novara, A., Gristina, L., Sala, G., Galati, A., Crescimanno, M., Cerdà, A., Badalamenti, E., La Mantia, T. 2017. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. The Science of the Total Environment 576, 420-429. https://doi.org/10.1016/j.scitotenv.2016.10.123.
  • Novara, A., Minacapilli, M., Santoro, A., Rodrigo-Comino, J., Carrubba, A., Sarno, M., Venezia, G., Gristina, L. 2019. Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Science of The Total Environment 652, 300-306. https://doi.org/10.1016/j. scitotenv.2018.10.247.
  • Pagliai, M. 1988. Soil porosity aspects. International Agrophysics 4, 215-232.
  • Paleari, S. 2017. Is the European Union protecting soil? A critical analysis of Community environmental policy and law. Land Use Policy 64, 163-173. https://doi.org/10.1016/j. landusepol.2017.02.007.
  • Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., Alewell, C. 2016. Soil Conservation in Europe: Wish or Reality? Land Degradation & Development 27 (6), 1547-1551. https://doi.org/10.1002/ldr.2538.
  • Pang, X.P., Letey, J. 2000. Organic Farming Challenge of Timing Nitrogen Availability to Crop Nitrogen Requirements. Soil Science Society of America Journal 64 (1), 247-253. https://doi. org/10.2136/sssaj2000.641247x.
  • Périé, C., Ouimet, R. 2008. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science 88 (3), 315-325. https://doi.org/10.4141/CJSS06008.
  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., Seidel, R. 2005. Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 55 (7), 573-582. https://doi.org/10.1641/00063568(2005)055[0573:EEAECO]2.0.CO;2.
  • Reganold, J.P., Glover, J.D., Andrews, P.K., Hinman, H.R. 2001. Sustainability of three apple production systems. Nature 410 (6831), 926-930. https://doi.org/10.1038/35073574.
  • Rigby, D., Cáceres, D. 2001. Organic farming and the sustainability of agricultural systems. Agricultural Systems 68 (1), 21-40. https://doi.org/10.1016/S0308-521X(00)00060-3.
  • Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S. 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of The Total Environment 601-602, 821-832. https://doi.org/10.1016/j. scitotenv.2017.05.239.
  • Schjønning, P., Elmholt, S., Munkholm, L.J., Debosz, K. 2002. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agriculture, Ecosystems & Environment 88 (3), 195-214. https://doi.org/10.1016/S0167-8809(01)00161-X.
  • Schröder, J.J., Scholefield, D., Cabral, F., Hofman, G. 2004. The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation. Environmental Science & Policy 7 (1), 15-23. https://doi.org/10.1016/j.envsci.2003.10.006.
  • Seufert, V., Ramankutty, N., Mayerhofer, T. 2017. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10-20. https://doi.org/10.1016/j. foodpol.2016.12.009.
  • da Silva, A.P., Nadler, A., Kay, B. 2001. Factors contributing to temporal stability in spatial patterns of water content in the tillage zone. Soil and Tillage Research 58 (3-4), 207-218. https://doi.org/10.1016/S0167-1987(00)00169-0.
  • Skinner, C., Gattinger, A., Muller, A., Mäder, P., Flieβbach, A., Stolze, M., Ruser, R., Niggli, U. 2014. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis. Science of The Total Environment 468-469, 553-563. https://doi.org/10.1016/j.scitotenv.2013.08.098.
  • Smith, P. 2016. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology 22 (3), 1315-1324. https://doi.org/10.1111/gcb.13178.
  • Smith, H.G., Dänhardt, J., Lindström, Å., Rundlöf, M. 2010. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia 162 (4), 1071-1079. https://doi.org/10.1007/s00442-010-1588-2.
  • Smith, P., Cotrufo, M.F., Rumpel, C., Paustian, K., Kuikman, P.J., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bustamante, M., House, J.I., Sobocká, J., Harper, R., Pan, G., West, P.C., Gerber, J.S., Clark, J.M., Adhya, T., Scholes, R.J., Scholes, M.C. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1 (2), 665-685. https://doi.org/10.5194/soil-1-665-2015.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC.
  • Sommer, R., Bossio, D. 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144, 83-87. https://doi. org/10.1016/j.jenvman.2014.05.017.
  • Vicente-Vicente, J.L., García-Ruiz, R., Francaviglia, R., Aguilera, E., Smith, P. 2016. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 235, 204-214. https://doi.org/10.1016/j.agee.2016.10.024.
  • Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1), 29-38
  • Walmsley, A., Cerdà, A. 2017. Soil macrofauna and organic matter in irrigated orchards under Mediterranean climate. Biological Agriculture & Horticulture 33 (4), 247-257. https://doi.or g/10.1080/01448765.2017.1336486.
  • Wang, L., Wang, Y., Saskia, K., Artemi, C., Ma, B., Wu, F. 2018. Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment. Journal of Arid Land 10 (6), 921-931. https://doi.org/10.1007/s40333-018-0016-z.
  • Winqvist, C., Ahnström, J., Bengtsson, J. 2012. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Annals of the New York Academy of Sciences 1249, 191-203. https://doi.org/10.1111/j.1749-6632.2011.06413.x.
  • Worthington, V. 2001. Nutritional quality of organic versus conventional fruits, vegetables, and grains. Journal of Alternative and Complementary Medicine (New York, N.Y.) 7 (2), 161-173. https://doi.org/10.1089/107628001300303691.
  • Zuecco, G., Penna, D., Borga, M. 2018. Runoff generation in mountain catchments: long-term hydrological monitoring in the Rio Vauz Catchment, Italy. Cuadernos de Investigación Geográfica 44 (2), 397-428. https://doi.org/10.18172/cig.3327.