¿Comprenden los estudiantes las gráficas cartesianas usadas en los textos de ciencias?

  1. García García, José Joaquín
  2. Perales Palacios, Francisco Javier
Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2007

Volumen: 25

Número: 1

Páginas: 107-132

Tipo: Artículo

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Referencias bibliográficas

  • AINLEY, J., NADI, H. y PRATT, D. (2000).The construction of meaning for trend in active graphing. International Journal of Computers for Mathematical Learning, 5, pp. 85-114.
  • BENGTSSON, L.A. (1999). Dimensions of performance in the interpretation of diagrams, tables and maps: some gender differences in the swedish scholastic aptitude test. Journal of Research of Science Teaching, 36(5), pp. 565-582.
  • BERG, C.A. y SMITH, P. (1994). «Assesing Students» abilities to construct and interpret line graphs: disparities between multiple –choice and free– response instruments. Science Education, 78(6), pp. 527-554.
  • BLUBAUGH, W.L. y EMMONS, K. (1999). Algebra for all. Graphing for all students. Mathematics Teacher, 92(4), pp. 323-334.
  • BOWEN, G.M., ROTH, W.M. y MCGINN, M.K. (1999). Interpretations of graphs by university biology students and practicing scientist. Toward a social practice view of scientific representation practices. Journal of Research in Science Teaching, 36(9), pp. 1.020-1.043.
  • BROWN, J.S., COLLINS, A. y DUGUID, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, pp. 32-42.
  • CAMPANARIO, J.M. y OTERO, J.C. (2001). Errores y distorsiones en las representaciones gráficas que aparecen en la prensa. Enseñanza de las Ciencias, número extra VI Congreso, p. 139.
  • CARPENTER, T.P., CORBIT, M.K., KEPNER, H.S., Jr. LINQUIST, M.M. y REYS, R.E. (1981). Results from the second mathematics assessment of the National assessment of Educational Progress. Reston, V.A: National Council of Teacher of Mathematics.
  • DUVAL, R. (1999). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales. Colombia: Universidad del Valle y Peter Lang S.A. Cali.
  • DUVAL, R. (1988). Graphiques et équations. Annales de Didactique et Sciences Cognitives, 1, pp. 235-253.
  • GARCÍA, J. y CERVANTES, A. (2004). Las representaciones gráficas cartesianas en los libros de texto de ciencias. Alambique, 41, pp. 99-108.
  • GARCÍA, J. (2005). El uso y el volumen de información en las representaciones gráficas cartesianas presentadas en los libros de texto de ciencias experimentales. Enseñanza de las Ciencias, 23(2), pp. 181-200.
  • GOLDMAN, S.R. (2003). Learning in complex domains: when and why do multiple representations help? Learning and Instruction, 13(2), pp. 239-244.
  • GREENO, J. (1998). The situativity of knowing, learning and research. American Psychologist, 53(1), pp. 5-26.
  • GUTHRIE, J.T., WEBER, S. y KIMMERLEY, N. (1993). Searching documents: Cognitive processes and deficits in understanding graphs, tables and illustrations. Contemporary Educational Psychology, 18, pp. 186-221.
  • JANVIER, C. (1981). Dificulties related to the concept of variable presented graphically, en Comiti, C. (ed.). Proceedings of the fi fth International Conference of the International Group for the Psychology of Mathematics Education, pp. 189-193. Grenoble, France: IGPME.
  • JANVIER, C. (1983). Teaching the concept of function. Mathematical Education for Teaching, 4(2), pp. 48-60.
  • KOLATA, G. (1984). The proper display of data. Science, 226. pp. 156-157.
  • KOZMA, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), pp. 205-226.
  • KUCHEMAN, D. (1984). Stages in understanding algebra. Journal of Structural Learning, 8, pp. 113-124.
  • LAVE, J. (1993). The practice of learning, en Chaiklin, S. y Lave, J. (eds.). Understanding Practice: Perspectives on Activity and Context, pp. 3-32. Cambridge: Cambridge University Press.
  • LEINHARDT, G, ZALAVSKY, O. y STEIN, M.K. (1990). Functions, Graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), pp. 1-64.
  • LEWALTER, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2) pp. 177-189.
  • MCKENZIE, D.L. y PADILLA, M.J. (1986). The construction and validation of the graphing in science (togs). Journal of Research in Science Teaching, 23(7), pp. 571-579.
  • PADILLA, M.J., MCKENZIE, D.L. y SHAWN, E.L. Jr. (1986). An examination of the line graphing ability of students in grades seven throught twelve. School Science and Mathematics, 86(1), pp. 20-25.
  • PAPERT, S. (1993). The Childrens Machine: Rethinkhing the School in the Age of the Computer. Nueva York: Basic Books.
  • PRATT, D. (1995). Young children’s active and passive graphing. Journal of Computer Assisted Learning, 11, pp. 157-169.
  • POSTIGO, Y. y POZO, J.I. (2000). Cuando una gráfica vale más que 1.000 datos: la interpretación de gráficas por alumnos adolescentes. Infancia y Aprendizaje, 90, pp. 89-110.
  • RESNICK, L. (1988). Learning in school an out. Educational Researcher, 16(9), pp. 13-20.
  • ROTH, W.M. y MCGINN, M.K. (1997). Graphing: Cognitive ability or practice. Science Education, 81, pp. 91-106.
  • SCHNOTZ, W. (1993). On the relation between dual coding and mental models in graphics comprehension. Learning and Instruction, 3, pp. 247-249.
  • SEUFERT, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), pp. 227-237.
  • SWATTON, P. y TAYLOR, R.M. (1994). Pupil performance in graphical task and its relationship to the ability to handle variables. British Educational Research Journal, 20, pp. 227-243.
  • WAGNER, S. (1981). Conservation of equation and function under transformations of variable. Journal for Research in Mathematics Education, 12(2), pp. 107-118.