Las cromititas del Complejo Ofiolítico de Camagüey, Cubaun ejemplo de cromitas ricas en Al

  1. Henares, Saturnina
  2. González Jiménez, José María
  3. Gervilla Linares, Fernando
  4. Proenza Fernández, Joaquin Antonio
  5. Chang Rodríguez, Alfonso
  6. González Pontón, Rubén B.
Journal:
Boletín de la Sociedad Geológica Mexicana

ISSN: 1405-3322

Year of publication: 2010

Tome: 62

Issue: 1

Pages: 173-185

Type: Article

DOI: 10.18268/BSGM2010V62N1A10 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Boletín de la Sociedad Geológica Mexicana

Abstract

The Camagüey Ophiolitic Complex extends along the central-eastern region of Cuba. This ophiolitic complex contains several deposits of Al-rich chromite [Cr/(Cr+Al) = 0.31-0.6] very enriched in TiO2 (up to 1 wt%) and represents the second most important mining district for refractory grade chromite in Cuba. The chromite deposits are hosted by dunite and harzburgite, spatially associated with feldspatic rocks (gabbro dikes and/or sills, troctolites and/or anorthosites) in close proximity to gabbroic cumulates at the base of the plutonic crust. The texture observed in the chromite deposits is predominantly massive, although fine disseminated, nodular and brecciated textures are also present. The interstitial silicate matrix of the chromitite consists principally of olivine and to a lesser extent pyroxenes and plagioclase. Often these silicates are altered to other secondary minerals such as serpentine, chlorite, magnetite and uvarovite-type garnet. The chromite crystals usually host small solid inclusions of the same silicates that form the matrix, Fe-, Ti- and/or Zr-rich oxides, and Fe-Ni-Cu sulphides and alloys. The above mentioned metallic minerals also occur in the interstitial silicate matrix where they record variable alteration. The structural, petrological and geochemical characteristics of the chromitites suggest formation from melts generated after reaction of basaltic melts with upper lithospheric mantle peridotites or, alternatively, as result of the assimilation of pre-existing feldspatic rocks (gabbros and troctolites) located in the shallowest upper mantle.