Recycled aggregate in road construction following the Spanish General Technical Specifications for Roads and Bridge Works (PG-3): a case study

  1. Martín Morales, María
  2. Cuenca Moyano, G. M.
  3. Zamorano, M.
  4. Valverde Palacios, Ignacio
Revista:
Informes de la construcción

ISSN: 0020-0883

Año de publicación: 2013

Volumen: 65

Número: 529

Páginas: 107-119

Tipo: Artículo

DOI: 10.3989/IC.11.125 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Informes de la construcción

Resumen

This research characterizes four samples of recycled aggregate for their potential use in road construction projects in consonance with the Spanish General Technical Specifications for Roads and Bridge Works (PG-3). Although some fractions were of sufficient quality for the construction of embankments, backfills, and quarry-run fills, they were ultimately found to be unsuitable for the construction of underground drainage, granular structural layers, soil stabilization and concrete pavements. They were negatively evaluated because of their particle size distribution and sulfate content. Nevertheless, the quality of this recycled aggregate could be substantially improved by manually removing the gypsum before the crushing process at the plant or by selecting the material with greater care at the beginning of the process. Finally, we suggest that Construction and Demolition (C&D) waste plant managers should modify the manufacturing process to obtain a suitable particle size distribution in accordance with PG-3 requirements and the projected use of the aggregate.

Referencias bibliográficas

  • (1) Del Río Merino, M., Izquierdo García, P., Salto Weis Azevedo, I. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste management & research, 28(2): 118-129. http://dx.doi.org/10.1177/0734242X09103841 PMid:19723824
  • (2) Morán del Pozo, J.M., Juan Valdés, A.J., Aguado, P.J., Guerra, M.I., Medina, C. (2011). State of the art on construction and demolition wastes management: Limitations. Informes de la Construcción, 63(521): 89-95. http://dx.doi.org/10.3989/ic.09.038
  • (3) Solís-Guzmán, J., Marreno, M., Montes-Delgado, M.V., Ramírez-de-Arellano, A. (2009). A Spanish model for quantification and managment of construction waste. Waste Management, 29(9): 2542-2548. http://dx.doi.org/10.1016/j.wasman.2009.05.009 PMid:19523801
  • (4) Esin, T., Cosgun, N. (2007). A study conducted to reduce construction waste generation in Turkey. Building and Environment, 42(4): 1667-1674. http://dx.doi.org/10.1016/j.buildenv.2006.02.008
  • (5) Van Gerven, T., Geysen, D., Stoffels, L., Jaspers, M., Wauters, G., Vandecasteele, C. (2005). Management of incinerator residuos in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Management, 25(1): 75-87. http://dx.doi.org/10.1016/j.wasman.2004.09.002 PMid:15681181
  • (6) Vegas, I., Ia-ez, J.A., San José, J.T., Urzelai, A. (2008). Construction demoliton wastes, Waelz slag and MSWI botton ash: a comparative technical analysis as material for road construction. Waste Management, 28(3): 565-574. http://dx.doi.org/10.1016/j.wasman.2007.01.016 PMid:17451930
  • (7) Ministry of Public Works. Order/FOM/891. (2004). Amendments of specific articles of the General Technical Specifications in Road Construction (PG-3) [Enmiendas de los artículos específicos del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras (PG-3)]. Madrid, Spain.
  • (8) Debieb, F., Courard, L., Kenai, S., Degeimbre, R. (2009). Roller compacted concrete with contaminated recycled aggregates. Construction and Building Materials, 23: 3382-3387. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.031
  • (9) Olorunsogo, F.T., Padayachee, N. (2002). Performance of recycled aggregate concrete monitored by durability indexes. Cement and Concrete Research, 32:179-185. http://dx.doi.org/10.1016/S0008-8846(01)00653-6
  • (10) Corinaldesi, V., Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1): 289-294. http://dx.doi.org/10.1016/j.conbuildmat.2007.12.006
  • (11) Corinaldesi, V. (2009): Mechanical behavior of masonry assemblages manufactured with recycled-aggregate mortars. Cement and Concrete Composites, 31(7): 505-510. http://dx.doi.org/10.1016/j.cemconcomp.2009.05.003
  • (12) González-Fonteboa, B., Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43: 429-437. http://dx.doi.org/10.1016/j.buildenv.2007.01.008
  • (13) Rahal, K.: Mechanical properties of concrete with recycled coarse aggregate. (2007). Building and Environment, 42(1): 407-415. http://dx.doi.org/10.1016/j.buildenv.2005.07.033
  • (14) Mas, B., Cladera, A., del Olmo, T., Pitarch, F. (2012). Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Construction and Building Materials, 27(1): 612-622. http://dx.doi.org/10.1016/j.conbuildmat.2011.06.073
  • (15) Soutsos, M.N., Tang, K., Millard, S.G. (2011). Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks. Construction and Building Materials, 25(7): 3131-3143. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.024
  • (16) Jiménez, J.R., Ayuso, J., Agrela, F., López, M., Pérez Galvín, A. (2012). Utilisation of unbound recycled aggregates from selected CDW in unpaved rural Roads. Resources, Conservation and Recycling, 58: 88-97. http://dx.doi.org/10.1016/j.resconrec.2011.10.012
  • (17) Agrela, F., Barbudo, A., Ramírez, A., Ayuso, J., Carvajal, M.D., Jiménez, J.R. (2012). Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain. Resources, Conservation and Recycling, 58: 98-106. http://dx.doi.org/10.1016/j.resconrec.2011.11.003
  • (18) Vegas, I., Iba-ez, J.A., Lisbona, A., Sáez de Cortazar, A., Frías, M. (2011). Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Construction and Building Materials, 25(5): 2674-2682. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.018
  • (19) Melbouci, B. (2009). Compaction and shearing behaviour study of recycled aggregates. Construction and Building Materials, 23(8): 2723-2730. http://dx.doi.org/10.1016/j.conbuildmat.2009.03.004
  • (20) Pérez, I., Pasandín, A.R., Gallego, J. (2012). Stripping in hot mix asphalt produced by aggregates from construction and demolition waste. Waste Management & Research, 30(1): 3-11. http://dx.doi.org/10.1177/0734242X10375747 PMid:20627995
  • (21) Chen, M.Z., Lin, J.T., Wua, S.P., Liu, C.H. (2011). Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 25(4): 1532-1536. http://dx.doi.org/10.1016/j.conbuildmat.2010.08.005
  • (22) Spanish standard UNE-EN 932-1. (1997). Test for general properties of aggregates. Part 1: Methods for sampling. [Ensayos para determinar las propiedades generales de los áridos. Parte 1: Métodos de muestreo]. AENOR, Madrid, Spain.
  • (23) Spanish standard UNE-EN 932-2. (1999). Test for general properties of aggregates. Part 2. Methods for reducing laboratory samples. [Ensayos para determinar las propiedades generales de los áridos. Parte 2: Método para la reducción de muestras de laboratorio]. AENOR, Madrid, Spain.
  • (24) Spanish standard UNE-EN 933-1/A1. (2006). Test of geometrical properties of aggregates. Part 1: Determination of particle size distribution. Sieving method. [Ensayos para determinar las propiedades geométricas de los áridos. Parte 1: Determinación de la granulometría de las partículas. Métodos de tamizado]. AENOR, Madrid, Spain.
  • (25) Spanish standard UNE-EN 933-2/1M. (1999). Test of geometrical properties of aggregates. Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures. [Ensayos para determinar las propiedades geométricas de los áridos. Parte 2: Determinación de la granulometría de las partículas. Tamices de ensayo, tama-o nominal de las aberturas]. AENOR, Madrid, Spain.
  • (26) Spanish standard UNE-EN 933-8. (1999). Test of geometrical properties of aggregates. Part 8: Assessment of fines. Sand equivalent test. [Ensayos para determinar las propiedades geométricas de los áridos. Parte 8: Evaluación de los finos. Ensayo de equivalente de arena]. AENOR, Madrid, Spain.
  • (27) Spanish standard UNE-EN 1097-2. (1999). Test for mechanical and physical properties of aggregates. Part 2: Methods for the determination of resistance to fragmentation. [Ensayos para determinar las propiedades físicas y mecánicas de los áridos. Parte 2: Método para la determinación de la resistencia a la fragmentación]. AENOR, Madrid, Spain.
  • (28) Spanish standard UNE-EN 103103. (1994). Determination of the liquid limit of a soil by the Casagrande apparatus method. [Determinación del límite líquido de un suelo por el método del aparato de Casagrande]. AENOR, Madrid, Spain.
  • (29) Spanish standard UNE-EN 103104. (1993). Test for plastic limit of a soil. [Determinación del límite plástico de un suelo]. AENOR, Madrid, Spain.
  • (30) Spanish standard UNE-EN 103502. (1995). Test laboratory method for determining in a soil the CBR index. [Método de ensayo para la determinación en laboratorio del índice CBR de un suelo]. AENOR, Madrid, Spain.
  • (31) Spanish standard UNE-EN 1744-1. (2010). Test for chemical properties of aggregates. Part 1: Chemical analysis. [Ensayos para determinar las propiedades químicas de los áridos. Parte 1: análisis químico]. AENOR, Madrid, Spain.
  • (32) Tam, V.W.Y., Wang, K., Tam, C.M.L. (2008). Assessing relationship: among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis. Journal of Hazardous Materials, 152(1): 703-714. http://dx.doi.org/10.1016/j.jhazmat.2007.07.061 PMid:17764837
  • (33) Poon, C.S., Chan, D.: Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. (2006). Construction and Building Materials, 20(8): 578-585. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.045
  • (34) Kraemer, C., Pardillo, J.M., Rocci, S., Romana, M.G., Sánchez Blanco, V., Del Val, M.A. (2004). Ingeniería de carreteras, volumen 2. McGraw Hill, Madrid, Spain.
  • (35) Park, T. (2003). Application of construction and building debris as base and subbase materials in rigid pavement. Journal of Transportation Engineering, 129(5): 558-563. http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:5(558)
  • (36) Tu, T-Y., Chen, Y-Y., Hwang, C-L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5): 943-950. http://dx.doi.org/10.1016/j.cemconres.2005.11.022
  • (37) Nataatmadja, A., Tan, Y.L. (2001). Resilient response of recycled concrete road aggregates. Journal of Transportation Engineering, 127(5): 450-453. http://dx.doi.org/10.1061/(ASCE)0733-947X(2001)127:5(450)
  • (38) Tabsh, S.W., Abdelfatah, A.S. (2009). Influence of recycled concrete aggregates on strength properties of concrete. Construction and Building Materials, 23(2): 1163-1167. http://dx.doi.org/10.1016/j.conbuildmat.2008.06.007
  • (39) Chini, A.R., Kuo, S-S., Armaghani, J.M., Duxbury, J.P. (2001). Test of recycled concrete aggregate in accelerated test track. Journal of Transportation Engineering, 127(6): 486-492. http://dx.doi.org/10.1061/(ASCE)0733-947X(2001)127:6(486)
  • (40) Hansen, T.C., Narud, H. (1983). Strength of recycled concrete made from crushed concrete coarse aggregate. Concrete International: Design and Construction, 5(1): 79-83.
  • (41) Sri Ravindrarajah, R., Loo, Y.H., Tam, C.T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Resources, 39: 214-220. http://dx.doi.org/10.1680/macr.1987.39.141.214