Ingeniería tisular cardiaca
- García Muñoz, Fernando
- Crespo Ferrer, Pascual Vicente
- García López, José Manuel
ISSN: 0365-7965
Datum der Publikation: 2013
Band: 98
Nummer: 789
Seiten: 101-105
Art: Artikel
Andere Publikationen in: Actualidad médica
Zusammenfassung
La recuperación de la pérdida de capacidad funcional cardiaca es uno de los campos de investigación más atractivos para la ingeniería tisular y medicina regenerativa por su alta incidencia y prevalencia. En los últimos años la cardiomioplastia celular, que consiste en implantar células aisladas con capacidad regenerativa, se ha desarrollado notablemente como una herramienta clínicamente útil, aunque los resultados son cuantitativamente escasos. Debido a la baja retención de células implantadas, se han utilizado técnicas de ingeniería tisular para intentar mejorar la capacidad funcional. La ingeniería tisular in situ , que consiste en administrar de manera conjunta células y una matriz extracelular, ha conseguido aumentar la retención de células y mejora los resultados de la cardiomioplastia celular. La ingeniería tisular in vitro a nivel tisular, que se basa en construir en el laboratorio parches tridimensionales con células, matrices y señales necesarias para la construcción de un sustituto tisular que posteriormente es implantado en la zona dañada, ha mejorado las capacidades funcionales contráctiles cardiacas gracias al uso de biorreactores que intentan mimetizar el micromedioambiente cardiaco. La ingeniería tisular in vitro a nivel de órgano consiste en la descelularización del órgano cardíaco y la posterior perfusión de de distintos tipos celulares para intentar repoblar el miocardio y el sistema vascular. Se ha conseguido la contracción y el acoplamiento eléctrico de cardiomiocitos, pero por el momento, la capacidad contráctil final es escasa. Otras técnicas de ingeniería tisular basadas en matrices acelulares o en constructos amatriciales han servido de pasos intermedios hacia los avances en la ingeniería tisular in vitro.
Bibliographische Referenzen
- Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007; 167(10):989-97.
- Almenar L, Segovia J, Crespo-Leiro MG, Palomo J, Arizón JM, González-Vílchez F., et al, on behalf of the Spanish Heart Transplantation Teams Spanish Registry on Heart Transplantation. 23rd Oficial Report of the Spanish Society of Cardiology Working Group on Heart Failure and Heart Transplantation (1984-2011). Rev Esp Cardiol 2012; 65(11):1030- 1038
- Anversa P, Kajstura J, Rota M, Leri A. Regenerating new heart with stem cells. J Clin Invest 2013; 123(1):62-70.
- Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011; 13:27-53.
- Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004; 12(3-4):367-77.
- Bayes-Genis A, Soler-Botija C, Farré J, Sepúlveda P, Raya A, Roura S, et al. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. J Mol Cell Cardiol 2010; 49(5):771-80.
- Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 378(9806):1847-57.
- Borschel GH, Dennis RG, Kuzon WM Jr. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 2004; 113(2):595-602; discussion 603-4.
- Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods 2012; 18(11):866-76.
- Chong JJ. Cell therapy for left ventricular dysfunction: an overview for cardiac clinicians. Heart Lung Circ 2012; 21(9):532-42.
- Di Donato M, Sabatier M, Dor V, Toso A, Maioli M, Fantini F. Akinetic versus dyskinetic postinfarction scar: relation to surgical outcome in patients undergoing endoventricular circular patch plasty repair. J Am Coll Cardiol 1997; 29(7):1569-75.
- Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 2009; 106(35):14990-5.
- Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012; 303(2):H133-43.
- Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, BayesGenis A. Cardiac Tissue Engineering and the Bioartificial Heart. Rev Esp Cardiol 2013; 66(5):391-399.
- Gaudette GR, Cohen IS. Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation 2006; 114(24):2575-7.
- Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006; 27: 3675–3683.
- Kang S, Yang YJ, Li CJ, Gao RL. Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta-analysis for randomized controlled trials. Coron Artery Dis 2008; 19(5):327-35.
- Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, largescale tissue restoration on the beating heart after myocardial injury. Circulation 2005; 112(9 Suppl):I173-7.
- Lai PH, Chang Y, Chen SC, Wang CC, Liang HC, Chang WC, et al. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration. Tissue Eng 2006; 12(9):2499-508.
- Leri A, Anversa P. Stem cells: Bone-marrow-derived cells and heart failure-the debate goes on. Nat Rev Cardiol 2013; 10(7):372-3.
- Li Z and Guan J. Hydrogels for Cardiac Tissue Engineering. Polymers 2011; 3(2): 740-761.
- Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, et al. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 2006; 27(23):4221-9.
- Lisi A, Briganti E, Ledda M, Losi P, Grimaldi S, Marchese R, et al. A combined synthetic-fibrin scaffold supports growth and cardiomyogenic commitment of human placental derived stem cells. PLoS One 2012; 7(4):e34284.
- Lobo González M. Células madre en terapia celular cardíaca. Actual Med 2013; 98:(788):38-44
- Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355(12):1199-209.
- Lunkenheimer PP, Redmann K, Westermann P, Rothaus K, Cryer CW, Niederer P, et al. The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur J Cardiothorac Surg 2006; 29 Suppl 1:S41-9.
- Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 2012; 379(9819):895-904.
- Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials 2013; 34(2):393-401.
- Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12(4):459-65.
- Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2):213-21.
- Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004; 101(52):18129-34.
- Radisic M, Park H, Vunjak-Novakovic G. Cardiac-tissue engineering. En : Lanza R, Langer R, Vacanti J (Eds.), Principles of Tissue Engineering, Academic Press, Boston, 2007, pp. 551-568.
- Rigol M, Solanes N, Farré J, Roura S, Roqué M, Berruezo A, et al. Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. J Card Fail 2010; 16(4):357-66.
- Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 2008; 4(3):477-89.
- Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002; 90(3):e40.
- Starling RC, Jessup M. Worldwide clinical experience with the CorCap Cardiac Support Device. J Card Fail 2004; 10(6 Suppl):S225-33.
- Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V, et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 2009; 106(39):16568-73.
- Suárez de Lezo J, Herrera C, Romero MA, Pan M, Jiménez R, Carmona D, et al. Functional recovery following intracoronary infusion of autologous mononuclear bone marrow cells in patients with chronic anterior myocardial infarction and severely depressed ventricular function. Rev Esp Cardiol 2010; 63(10):1127-35.
- Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial. Third universal definition of myocardial infarction. Eur Heart J 2012; 33(20):2551-67.
- Vanore M, Chahory S, Payen G, Clerc B. Surgical repair of deep melting ulcers with porcine small intestinal submucosa (SIS) graft in dogs and cats. Vet Ophthalmol 2007; 10(2):93-9.
- Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 2011; 13:245-67.
- Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, et al. Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 2010; 16(2):169-87.
- Wang F, Guan J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev 2010; 62(7-8):784-97.
- Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K, et al. Development and evaluation of a perfusion decellularization porcine heart model--generation of 3-dimensional myocardial neoscaffolds. Circ J 2011; 75(4):852-60.
- Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011; 108(7):792-6.
- Yi BA, Wernet O, Chien KR. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J Clin Invest 2010; 120(1):20-8.
- Zachman AL, Crowder SW, Ortiz O, Zienkiewicz KJ, Bronikowski CM, Yu SS, et al. Pro-angiogenic and anti-inflammatory regulation by functional peptides loaded in polymeric implants for soft tissue regeneration. Tissue Eng Part A 2013; 19(3-4):437-47.
- Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 2006; 12(4):452-8.