On the (weak) dependence between risk pro les in insurance data analysis.

  1. Vázquez Polo, Francisco José
  2. Martel Escobar, María del Carmen
  3. Hernández Bastida, Agustín
Revista:
Anales de ASEPUMA

ISSN: 2171-892X

Año de publicación: 2013

Número: 21

Tipo: Artículo

Otras publicaciones en: Anales de ASEPUMA

Resumen

A common assumption in the statistical model for Bayes premium in the insurance context, is the independence between risk profiles associated with random quantities considered. In this communication we consider the compound collective risk model in which the primary distribution is comprised of the Poisson-Lindley distribution with a  parameter, and where the secondary distribution is an exponential one with a  parameter. We consider the case of dependence between risk pro les (i.e., the parameters  and ), where the dependence is modelled by a Farlie-Gumbel-Morgenstern family. Statistical properties and some consequences on the Bayes premium of the structure dependence chosen are studied.

Referencias bibliográficas

  • Berger, J.O. and Moreno, E. (1994). “Bayesian robustness in bidimensional models: prior independence (with discussion)”. Journal of Statistical Planning and Inference, 40, pp. 161–176.
  • Cossette, H.; Marceau, E. and Marri, F. (2008). “On the compound Poisson risk model with dependence based on a generalized Farlie–Gumbel– Morgenstern copula”. Insurance: Mathematics and Economics, 43 (3), pp. 444–455.
  • D’Este G.M. (1981). “A Morgenstern–type bivariate gamma distribution”. Biometrika, 68, pp. 339–340.
  • De la Horra, J. and Fernandez, C. ´ (1995). “Sensitivity to prior independence via Farlie–Gumbel–Morgenstern model”. Communications in Statistics: Theory and Methods, 24 (4), pp. 987–996.
  • Ghitany, M.E.; Al–Mutairi, D.K. and Nadarajah, S. (2008). “Zero–truncated Poisson–Lindley distribution and its applications”. Mathematics and Computers in Simulation, 79, pp. 279–287.
  • Ghitany, M.E. and Al–Mutairi, D.K. (2009). “Estimation methods for the discrete Poisson–Lindley distribution”. Journal of Statistical Computation and Simulation, 79, pp. 1–9.
  • Hernandez Bastida, A.; Fern ´ andez–S ´ anchez, M.P.; Gómez Deniz, E. ´ (2011). “Collective risk model: Poisson–Lindley and exponential distributions for Bayes premium and operational risk”. Journal of Statistical Computation and Simulation, 81 (6), pp. 759–778.
  • Lavine, M.; Wasserman, L. and Wolpert, R. (1991). “Bayesian inference with specified prior marginals”. Journal of the American Statistical Association, 86, pp. 964–971.
  • Miller, R. and Hickman, J. (1974). “Insurance credibility theory and Bayesian estimation”. In Kahn, P. M. (ed.) Credibility theory and applications, pp. 249–270. New York: Academic Press.
  • Morgenstern, D. (1956). “Einfache beispiele zweidimensionaler verteilungen”. Mitt. Math. Statistik, 8, pp. 234–235.
  • Peters, G.W., Shevchenko, P.V. and Wuthrich, M.V. ¨ (2008). “Dynamic operational risk: modelling dependence and combining different sources of information”. Preprint, CSIRO, call number CMIS2741.
  • Sankaran, M. (1970). “The discrete Poisson–Lindley distribution”. Biometrics, 26, pp. 145–149.
  • Scollnik, D.P.M. (1995). “Bayesian analysis of two overdispersed Poisson regression models”. Communications in Statistics: Theory and Methods, 24 (11), pp. 2901–2918.
  • Sivaganesan, S. (1991). “Sensitivity of some posterior summaries when the prior is unimodal with specified quantiles”. Canadian Journal of Statiscis, 19, pp. 57–65.
  • Wasserman, L.; Lavine, M. and Wolpert, R. (1993). “Linearization of Bayesian robustness problems”. Journal of Statistical Planning and Inference, 37, pp. 307-316.