Multinomial logistic estimation in dual frame surveys
- David Molina 1
- Maria del Mar Rueda 1
- Antonio Arcos 1
- Maria Giovanna Ranalli
- 1 Universidad de Granada. Departamento de Estadística e Investigación Operativa
ISSN: 1696-2281
Año de publicación: 2015
Volumen: 39
Número: 2
Páginas: 309-336
Tipo: Artículo
Otras publicaciones en: Sort: Statistics and Operations Research Transactions
Resumen
We consider estimation techniques from dual frame surveys in the case of estimation of proportions when the variable of interest has multinomial outcomes. We propose to describe the joint distribution of the class indicators by a multinomial logistic model. Logistic generalized regression estimators and model calibration estimators are introduced for class frequencies in a population. Theoretical asymptotic properties of the proposed estimators are shown and discussed. Monte Carlo experiments are also carried out to compare the efficiency of the proposed procedures for finite size samples and in the presence of different sets of auxiliary variables. The simulation studies indicate that the multinomial logistic formulation yields better results than the classical estimators that implicitly assume individual linear models for the variables. The proposed methods are also applied in an attitude survey.
Información de financiación
Financiadores
-
- MTM2012-35650
Referencias bibliográficas
- Arcos, A., D. Molina, M. Rueda, and M. G. Ranalli (2015). Frames2: A package for estimation in dual frame surveys. The R Journal, 7, 52–72.
- Bankier, M. D. (1986). Estimators based on several stratified samples with applications to multiple frame surveys. Journal of the American Statistical Association, 81, 1074–1079.
- Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review/Revue Internationale de Statistique, 279–292.
- Brick, J. M., S. Dipko, S. Presser, C. Tucker, and Y. Yuan (2006). Nonresponse bias in a dual frame survey of cell and landline numbers. Public Opinion Quarterly, 70, 780–793.
- Deville, J. C. and C. E. SaÌrndal (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376–382.
- Fuller, W. A. and L. F. Burmeister (1972). Estimators for samples selected from two overlapping frames. Proceedings of social science section of The American Statistical Asociation.
- Godambe, V. P. and M. E. Thompson (1986). Parameters of superpopulation and survey population: their relationships and estimation. International Statistical Review, 54, 127–138.
- Hartley, H. O. (1962). Multiple frame surveys. In Proceedings of the Social Statistics Section, American Statistical Association, pp. 203–206.
- Isaki, C. T. and W. A. Fuller (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77, 89–96.
- Kalton, G. and D. W. Anderson (1986). Sampling rare populations. Journal of the Royal Statistical Society. Series A (General), 149, 65–82.
- Lehtonen, R. and A. Veijanen (1998). On multinomial logistic generalized regression estimators. Technical Report 22, Department of Statistics, University of JyvaÌskylaÌ.
- Lohr, S. and J. Rao (2006). Estimation in multiple-frame surveys. Journal of the American Statistical Association, 101, 1019–1030.
- Lohr, S. L. (2009). Multiple-frame surveys. Handbook of Statistics, 29, 71–88.
- Lohr, S. L. and J. N. K. Rao (2000). Inference from dual frame surveys. Journal of the American Statistical Association, 95, 271–280.
- Mecatti, F. (2007). A single frame multiplicity estimator for multiple frame surveys. Survey methodology, 33, 151–157.
- Montanari, G. E. andM. G. Ranalli (2005). Nonparametric model calibration estimation in survey sampling. Journal of the American Statistical Association, 100, 1429–1442.
- Ranalli, M., A. Arcos, M. Rueda, and A. Teodoro (2015). Calibration estimation in dual-frame surveys. Statistical Methods and Applications First online: 01 September 2015, 1–29.
- Rao, J. N. K. and C. Wu (2010). Pseudo-empirical likelihood inference for multiple frame surveys. Journal of the American Statistical Association, 105, 1494–1503.
- SaÌrndal, C.-E., B. Swensson, and J. Wretman (1992). Model Assisted Survey Sampling. Springer-Verlag, New York.
- Singh, A. C. and F. Mecatti (2011, 12). Generalized multiplicity-adjusted Horvitz-Thompson estimation as a unified approach to multiple frame surveys. Journal of official statistics, 27, 1–19.
- Skinner, C. J. and J. N. K. Rao (1996). Estimation in dual frame surveys with complex designs. Journal of the American Statistical Association, 91, 349–356.
- Wolter, K. (2003). Introduction to Variance Estimation. Springer-Verlag, New York.
- Wu, C. and J. N. K. Rao (2006). Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Canadian Journal of Statistics, 34, 359–375.
- Wu, C. and R. R. Sitter (2001a). A model-calibration approach to using complete auxiliary information from survey data. Journal of the American Statistical Association, 96, 185–193.
- Wu, C. and R. R. Sitter (2001b). Variance estimation for the finite population distribution function with complete auxiliary information. Canadian Journal of Statistics, 29, 289–307.