Aplicación de la Ingeniería Tisular en la reparación de los defectos de la pared abdominal

  1. Calcerrada Alises, Enrique 1
  2. Martín Piedra, Miguel Ángel 1
  3. Gallart Aragón, Tania 1
  4. Sánchez Quevedo, María del Carmen 1
  5. Gómez Valverde, Eusebio 1
  6. Jiménez Ríos, José Antonio 1
  1. 1 Hospital Universitario San Cecilio
    info

    Hospital Universitario San Cecilio

    Granada, España

Revista:
Actualidad médica

ISSN: 0365-7965

Any de publicació: 2015

Tom: 100

Número: 794

Pàgines: 32-36

Tipus: Article

DOI: 10.15568/AM.2015.794.RE01 DIALNET GOOGLE SCHOLAR lock_openDIGIBUG editor

Altres publicacions en: Actualidad médica

Objetivos de desarrollo sostenible

Resum

In this work we have reviewed more than thirty relevant issues recently published in scientific journal with impact factor in order to estimate the effectiveness of new therapeutic approaches in reparation of abdominal wall defects. Tissue Engineering can be used for the development of new biological substitutes consisting on acellular dermal matrix seeded with different types of cells. These new biological meshes do not present some complications that are relatively common when artificial polymeric meshes are used in actual surgical practice. Besides the decrease of incidences such as infection and need to removal, lack of healing signals, or seromas, these new therapeutic approaches lead to some additional benefits such as to induce angiogenesis, biocompatibility and, thus, decrease of infection risk. There are several types of acellular dermal matrix (human, porcine, bovine …) with no significant evidence among them, although the most used is humanderived matrix. Cell culture over these biomaterials has reported better results than using acellular matrix. Matrix localization can also modify the relapse rate. In this sense, pre-peritoneal localization and anatomical separation of components technique have been reported as the best techniques. The main concern about the included studies is a short-term following period after treatment, and thus, scarce data about long-term effectiveness of these therapeutic approaches. Furthermore, due to the high price of the used biomaterials, these therapies are unfeasible nowadays in daily surgical practice. In summary, it is necessary advanced research about these new biomaterials in order to translate them to daily practice, as well as an adequate diagnosis and selection of the patient to be treated.

Referències bibliogràfiques

  • A. Lacco, A. Adeyomo, T. Riggs, R. Janczyk. Single institutional experience using biological mesh for abdominal wall reconstruction. Am J Surg. 2014; 208 (3): 480-4.
  • B. Buinewicz, B. Rosen. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 2004; 52: 188-194.
  • B. Tan, R-Q. Wei, M-Y. Tan, J-C. Luo, L. Deng, X-H. Chen, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. Journal of Surg Reserach. 2013; 182: 40-48.
  • C. Shi, W. Chen, Y. Zhao, B. Chen, Z. Xiao, et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials. 2011; 32 (3): 753-759.
  • D. O. Fauza, J. J. Marler, R. Koka, et al. Fetal Tissue Engineering: Diaphragmatic Replacement. J Pediatr Surg. 2001; 36: 146-151.
  • E. E. Falco, J. S. Roth, J. P. Fisher. Networks as a scaffold for skeletal muscle regeneration in abdominal wall hernia repair. Jour Surg Res. 2008; 149: 76-83
  • E. Gómez Valverde. Hospital Universitario San Cecilio. Servicio de Cirugía General. Granada.
  • E. I. Lee, C. J. Chike-Obi, P. González, et al. Abdominal Wall repair using acelllar dermal matrix: a follow-up study. Am J Surg. 2009; 198: 650-657.
  • F. C. Tatay, S. B. Diana, P. García Pastor, C. Gómez i Gavara, R. Baquero Valdelomar. Nuevo método de operar en la eventración compleja: separación anatómica de componentes con prótesis y nuevas inserciones musculares. Cir Esp. 2009; 86 (2): 87-93.
  • F. Pu, NP. Rhodes, Y. Bayon, R. Chen, G. Brans, R. Benne, et al. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair. Biomaterials. 2010; 31 (15): 4330-4340.
  • H. J. Lin, N. Spoerke, C. Deveney, R. Martindale. Reconstruction of complex abdominal wall hernias using acellular human dermal matrix a single institution experience. The Am Jour Surg. 2009; 197: 599-603
  • J. B. Lowe 3rd, J. B. Lowe, J. D. Baty, J.R Garza. Risks associated with “components separation” for closure of complex abdominal wall defects. Plast Reconstr Surg. 2003; 111: 1276-1283.
  • J. Blatnik, J. Jin, M. Rosen. Abdominal hernia repair with bridging acelular dermal matrix – an expensive hernia sac. Am J Surg. 2008; 196: 47-50.
  • J. E. Janis, A. C. O´Neill, J. Ahmad, T. Zhong, S. O. P. Hofer. Acellular dermal matrices in abdominal wall reconstruction: a systematic review of the current evidence. Plastic Surg. 2012; 130 (2): 183-193.
  • J. H. Patton, S. Berry, K. A. Kralovich. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. The Am Jour Surg. 2007; 193: 360-363.
  • J. J. Kim, G. R. D. Evans. Applications of biomaterial in plastic surgery. Clin Plastic Surg. 2012; 39: 359-376.
  • J-F. Ouellet, C. G. Ball, J. B. Kortbeek, L. A. Mack, A. W. Kirkpatrick. Bioprosthetic mesh use for the problematic thoracoabdominal wall outcomes in relation to contamination and infection. Am Jour Surg.2012; 203: 594- 597.
  • J-Y. Lai, P-Y. Chang, J-N. Lin. Body wall repair using small intestinal submucosa seeded with cells. Journal of Ped Surg. 2003; 38 (12): 1752-1755.
  • K. C. Shestak, H. J. Edington, R. R. Johnson. The separation of anatomic components technique for reconstruction of massive midline abdominal wall defects: anatomy, surgical technique, applications, and limitations revisited. Plast Reconstr Surg. 2000; 105(2): 731-738
  • K. M. Patel, M. Y. Nahabedian, F. Albino, P. Banhot. The use of porcine acellular dermal matrix in a bridge technique for complex abdominal wall reconstruction an outcome analysis. The Am Jour Surg. 2013; 205: 209-212.
  • K. M. Patel, M. Y. Nahabedian, M. Gatti, P. Bahnot. Indications and outcomes following complex abdominal reconstruction with component separation combined with porcine acellular dermal matrix reinforcement. Ann Plast Surg. 2012; 69 (4): 394-398.
  • L. Zhang, Q. Li, J. Quin, Y. Gu. Musculature tissue engineering to repair abdominal wall hernia. Artif Organs 2012; 36 (4): 348-352.
  • M. L. Lim, P. Jungebluth, F. Ajalloueian, L. H. Friedrich, I. Gilevich, K-H. Grinnemo, et al. Whole organ and tissue reconstruction in thoracic regenerative surgery. Mayo Clin Proc. 2013; 88 (10): 1151- 1166.
  • M.W. Clemens, J. C. Selber, J. Liu, D. M. Adelman, D.P. Baumann, P. B. Garvey, et al. Bovine versus porcine acellular dermal matrix for complex abdominal wall reconstruction. Plastic Surg. 2013; 131 (1): 72-79.
  • N. Bryan, H. Ahswin, N. Smart, Y. Bayon, S. Wohlert, JA. Hunt. The in vivo evaluation of tissue-based biomaterials in a rat full-thickness abdominal wall defect model. J Biomed Mater Res B App Biomater. 2014; 102 (4): 709-720.
  • O. Ramírez, E. Ruas, A. Dellon. “Components separation’’ method for closure of abdominal wall defects: An anatomic and clinical study. Plast and Reconstr Surg. 1990; 86: 519– 526.
  • P. W. Hsu, C. J. Salgado, K. Kent, M. Finnegan, M. Pello, R. Simons, et al. Evaluation of porcine dermal collagen (Permacol) used in abdominal wall reconstruction. J Plastic Reconstruc Aesthet Surg. 2009; 62: 1484-1489.
  • R. Langer, J. P. Vacanti. Tissue engineering. Science. 1993; 260 (5110): 920-6.
  • R. P. Silverman, E. N. Li, L. H. Holton, et al. Ventral hernia repair using allogenic acellular dermal matrix in a swine model. Hernia. 2004; 8: 336–342.
  • S. F. Badylak, D. Taylor, K. Uygun. Whole-organ tissue engineering: decellularization and recellularization of threedimensional matrix scaffolds. Annu Rev Biomed Eng. 2011; 13: 27-53.
  • S. M. Maurice, D. A. Skeete. Use of human acellular dermal matrix for abdominal Wall recostructions. Am J Surg. 2009; 197: 35-42
  • T. Ayele, AB. Zuki, BM. Noorjahan, MM. Noordin. Tissue engineering approach to repair abdominal wall defects using cell-seeded bovine tunica vaginalis in a rabbit model. J Mater Sci Mater Med. 2010; 21 (5): 1721-1730.
  • T. Drewa, P. Galazka, A. Prokurat, Z. Wolski, J. Sir, K. Wysocka, R. Czajkowski. Abdominal Wall repair using a biodegradable scaffold seeded with cells. Journal of Ped Surg. 2005; 40: 317-321.
  • T. S. de Vries Reilingh, H. van Goor, C. Rosman, et al. “Components separation technique” for the repair of large abdominal wall hernias. J Am Coll Surg. 2003; 196: 32-37.
  • T. Zhong, J. E. Janis, J. Ahmad, S. O. P. Hofer. Outcomes after abdominal wall reconstruction using acellular dermal matrix: A systematic review. J Plastic Reconstruc Aesthet Surg. 2011; 64: 1562-1571.
  • Y. Zhao, Z. Zhang, J. Wang, P. Yin, J. Zhou, M. Zhen, et al. Abdominal hernia repair with a decellulariced dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs. 2012; 36 (3): 247-254.
  • Z. Song, Z. Peng, Z. Liu, J. Yang, R. Tang, Y. Gu. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Tissue Eng Part A. 2013; 19 (13-14): 1543-1553.