Capacidad geométrica y memoria visoespacial en población adulta

  1. Ana Pérez 1
  2. Irene Mammarella 2
  3. Francesco Del Prete 1
  4. Teresa Bajo 1
  5. Cesare Cornoldi 2
  1. 1 Universidad de Granada, CIMCYC, España
  2. 2 Universidad de Padova, Italia
Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2014

Volumen: 35

Número: 2

Páginas: 225-249

Tipo: Artículo

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

Un estudio llevado a cabo con una tribu indígena del Amazonas (Dehaene, Izard, Pica y Spelke, 2006) demostró la existencia de una capacidad intuitiva para la ejecución de categorías conceptuales de geometría. Posteriormente, se ha demostrado que algunas de estas categorías se relacionan con el componente Visoespacial de la Memoria de Trabajo (MTVE) en niños (Mammarella y cols., 2013) y adolescentes (Giofrè y cols., 2013). Nuestros resultados con población adulta (estudiantes universitarios), muestran que un alto grado de control o procesamiento activo en MTVE predice parte de la varianza encontrada sólo en aquellos conceptos geométricos que demandan un procesamiento más complejo, como es el caso de la transformación mental. Estos hallazgos se enmarcan dentro del modelo de continuidad de Cornoldi y Vecchi (2003).

Referencias bibliográficas

  • Arrindell, W. A. y van der Ende. J. (1985). An empirical test of the utility of the observations-to-variables ratio in factor and components analysis. Applied Psychological Measurement, 9, 165-178.
  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-422.
  • Baddeley, A. D., y Hitch, G. J. (1974). Working memory. En G. Bower (Ed.), Recent advances in learning and motivation. 47-90. New York: Academic Press.
  • Baddeley, A., y Logie, R. (1999). Working memory: The multiple component model. En A. Miyake y P. Shah (Eds.), Models of working memory. 28-61. New York: Cambridge University Press.
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.
  • Clements, D. H., y Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on the Building Blocks project. Journal for Research in Mathematics Education, 38, 136-163.
  • Comrey, A. L. y Lee, H. B. (1992). A first course in factor analysis. Routledge.
  • Cornoldi, C., Dalla, Vecchia, R., y Tressoldi, P. E. (1995). Visuo-spatial working memory limitation in low visuo-spatial high verbal intelligence children. Journal of child psychology and child psychiatry, 36, 1053-64.
  • Cornoldi, C., Friso, G., y Pra Baldi, A. (2010). Prove MT avanzate-2. Prove MT avanzate di lettura e matematica 2 per il biennio della scuola secondaria di II grado. [Advanced MT 2 test-Advanced MT test of reading and mathematics for 9th and 10th grades]. Florence, Italy: Organizzazioni Speciali.
  • Cornoldi, C., y Vecchi, T. (2000). Mental Imagery in blind people: The role of passive and active visuospatial processes. En A. H. Morton (Ed.), Touch, representation and blindness. 29-58. Oxford: Oxford University Press.
  • Cornoldi, C., y Vecchi, T. (2003). Visuo-spatial working memory and individual differences. Hove, UK: Psychology Press. 87-110.
  • Darling, S., Della Sala, S., y Logie, R. H. (2007). Behavioural evidence for separating components within visuo-spatial working memory. Cognitive Processing, 8, 175-181.
  • Dehaene, S., Izard, V., Pica, P., y Spelke, E. (2006). Core Knowledge of Geometry in an Amazonian Indigene Group. Science, 311, 381.
  • Genkins, E. F. (1975). The concept of bilateral symmetry in young children. En M. F. Rosskopf (Ed.), Children's mathematical concepts: Six Piagetian studies in mathematics education. 5-43. New York: Teaching College Press.
  • Giofrè, D., Mammarella, I. C., Ronconi, L., y Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114-122.
  • Guilford, J. P., Christensen, P. R., A. Bond Jr. N. y Sutton, M. A. (1954). A factor analysis study of human interests. Psychological monographs: General and applied, 68, 1-38.
  • Halpern, D. F. (2000). Sex differences in cognitive abilities. Mahwah, NJ: LEA.
  • Hasher, L. y Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. En G. H. Bower (Ed); The psychology of learning and motivation: Advances in research and theory. San Diego, CA: Academic Press.
  • Hu, L. T. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1-55.
  • Jöreskog, K. G. y Sörbom, D. (1993). Lisrel 8: Structured equation modeling with the Simplis command language. Scientific Software International.
  • Jöreskog, K. G. y Sörbom, D. (2006). LISREL 8.8 statistical program [Scientific Software]. Chicago, IL: Scientific Software International.
  • Kosslyn, S. M., (1994). Image and brain. Cambridge, MA: MIT Press
  • Logie, R. H. (1995). Visuo-spatial working memory. Hove, UK: Lawrence Erlbaum Associates Ltd.
  • Logie, R. H., y Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive. En R. H. Logie y M. Denis (Eds.), Mental images ni human cognition. 105-115. Amsterdam: North-Holland, Elsevier.
  • Mammarella, I. C., Giofrè, D., Ferrara, R., y Cornoldi, C. (2013). Intuitive geometry and visuospatial working memory in children showing symptoms of nonverbal learning disabilities. Child Neuropsychology, 19, 235-249.
  • Mammarella, I. C., Toso, C. Pazzaglia, F. y Cornoldi, C. (2008). BVS-Corsi-Batteria per la valutazione della memoria visiva e spaziale.
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. y Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100.
  • Miyake, A, Friedman, N. P., Rettinger, D. A., Shah, P., y Hegarty, M. (2001). How are visuospatial working memory, executive functioning and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130, 621-640.
  • Palmer, S. E. (1985). The role of symmetry in shape perception. Acta Psychologica, 59, 67-90.
  • Pazzaglia, F., y Cornoldi, C. (1999). The role of distinct components of visuo-spatial working memory in the processing texts. Memory, 7, 19-41.
  • Shepard, R. N., y Metzler, M. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703.
  • Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.
  • Ungerleider, L. G., y Haxby, J. V, (1994). "What" and "where" in the human brain. Current Opinion Neurobiology, 4, 157-165.
  • Ungerleider, L. G., y Mishkin, M. (1982). Two cortical visual systems. En D. J. Ingle, M. S. Goodale, y R. J. W. Mansfield (Eds.), The analysis of visual behaviour 549-586. Cambridge, MA: MIT Press.
  • Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
  • Van Hiele-Geldof, D. (1984). The didactics of geometry in the lowest class of secondary school (M. Verdonck, Trans.). En D. Fuys, D. Geddes, y R. Tischler (Eds.), English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele. 1-214. Brooklyn, NY: Brooklyn College, School of Education.
  • Wynn, T. (1989). The evolution of spatial competence. Chicago: University of Illinois Press.