Efecto de sobrecargas ligeras sobre el rendimiento del salto vertical con contramovimiento

  1. Marcos Gutiérrez Dávila 1
  2. C. González 1
  3. Francisco Javier Giles Girela 1
  4. D. Gallardo 1
  5. Francisco Javier Rojas Ruiz 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

ISSN: 1577-0354

Año de publicación: 2016

Volumen: 16

Número: 64

Páginas: 633-648

Tipo: Artículo

DOI: 10.15366/RIMCAFD2016.64.002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

Resumen

El propósito de este estudio ha sido determinar el efecto de diferentes sobrecargas ligeras sobre el impulso vertical, la velocidad del centro de masas y el máximo pico de potencia, durante la realización de dos saltos verticales máximos consecutivos. Han participado 28 deportistas practicantes de modalidades deportivas donde el salto vertical constituye una habilidad básica. Se ha utilizado una plataforma de fuerza, operando a 500 Hz, sincronizada temporalmente a una cámara de vídeo, que registraba a 210 Hz el plano sagital de los saltos realizados sobre la plataforma. Los resultados indican que, cuando se utilizan sobrecargas del 7,5% del peso corporal, el tiempo utilizado durante la fase de contramovimiento se incrementa. El impulso vertical y el pico de potencia no varían con el uso de los diferentes niveles de las sobrecargas utilizadas, sin embargo, la velocidad de despegue se reduce un porcentaje similar al incremento de la carga.

Referencias bibliográficas

  • Aragón-Vargas, L.F. (2000). Evaluation of four vertical jump tests: Methodology, reliability, validity and accuracy. Measurement in Physical Education and Exercise Science, 4, 215–228. https://doi.org/10.1207/S15327841MPEE0404_2
  • Bobbert, M.F., Huijing, P., y van Ingen Schenau, G.J. (1987). Drop jump II. The influence of dropping height on the biomechanics of jumping. Medicine and Science in Sports and Exercise, 19, 339–346. PMid:3657482
  • Clark, K.P., Stearne, D.J., Walts, C.T., y Miller, A.D. (2010). The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. Journal of Strength and Conditioning Research, 24(12), 3287-3295. https://doi.org/10.1519/JSC.0b013e3181b62c0a PMid:19996786
  • Cormie, P., McBride, J.M., y McCaulley, G.O. (2008). Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. Journal of Applied Biomechanics, 24, 112–120. https://doi.org/10.1123/jab.24.2.112 PMid:18579903
  • Cormie, P., McCaulley, G.O., y McBride, J.M. (2007a). Validation of power measurement in dynamic lower body resistance exercise. Journal of Applied Biomechanics, 23, 112–127. https://doi.org/10.1123/jab.23.2.103
  • Cormie, P., McCaulley, G.O. Triplett, T., y McBride, J.M. (2007b). Optimal loading for maximal power output during lower-body resistance exercises. Medicine and Science in Sports and Exercise, 39, 340-349. https://doi.org/10.1249/01.mss.0000246993.71599.bf. PMid:17277599
  • Cronin, J., Hansen, K., Kawamori, N., y McNair, C. (2008). Effects of weighted vest and sled towing on sprint kinematic. Sports Biomechanics, 7(2), 160-172. https://doi.org/10.1080/14763140701841381 PMid:18610770
  • De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanovs segment inertia parameters. Journal of Biomechanics. 29(9), 1223-1230.https://doi.org/10.1016/0021-9290(95)00178-6
  • Driss, T., Vandewalle, H., Quievre, J., Miller, C., y Monod, H. (2001). Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. Journal of Sports Sciences, 19, 99–105. https://doi.org/10.1080/026404101300036271 PMid:11217015
  • Dugan E.L., Doyle T.L., Humphries B., Hasson C.J., y Newton R.U. (2004). Determining the optimal load for jump squats: a review of methods and calculations. Journal of Strength and Conditioning Research, 18(3), 668–732. https://doi.org/10.1519/1533-4287(2004)18<668:dtolfj>2.0.co;2
  • Faigenbaum, A.D., McForland, J.E., Shwerdtman, J.A., Ratamess N.A., Kang J., y Hoffman, J.R. (2006). Dynamic warm protocols, with and without a weighted vest, and fitness performance in high school female athletes. Journal of Atletic Training, 41(4), 357-363. PMid:17273458 PMCid:PMC1748418
  • Feltner, M.E., Bishop, E.J., y Perez, C.M. (2004). Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Research Quarterly for Exercise and Sport, 75, 3, 216-230. https://doi.org/10.1080/02701367.2004.10609155 PMid:15487286
  • Feltner, M.E., Fraschetti, D.J., y Crisp, R.J. (1999). Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. Journal of Sports Sciences, 17, 449–466. https://doi.org/10.1080/026404199365768 PMid:10404494
  • Fitts, R.H., y Widrick, J.J. (1996). Muscle mechanics: adaptations with exercise-training. Exercise and Sport Sciences Reviews, 85, 427–73. https://doi.org/10.1249/00003677-199600240-00016
  • Gutiérrez-Dávila, M.; Gutiérrez Cruz, C., Garrido, J.M., y Giles F.J. (2012). Efecto de la restricción segmentaria en los test de salto vertical CMJ. Archivos de Medicina del Deporte. XXV(147), 527-535.
  • Hara, M., Shibayama, A., Takeshita, D., y Fukashiro, S. (2006). The effect of arm swing on lower extremities in vertical jumping. Journal of Biomechanics, 39, 2503-2511. https://doi.org/10.1016/j.jbiomech.2005.07.030 PMid:16168998
  • Jaric, S., y Markovic, G. (2009). Leg muscle design: the maximum dynamic output hypothesis. Medicine & Science in Sports Exercise, 41, 780–787. https://doi.org/10.1249/MSS.0b013e31818f2bfa PMid:19276856
  • Kaneko, M., Fuchimoto, T., Toji, H., y Suei, K. (1983). Training effect of different loads on the force–velocity relationship and mechanical power output in human muscle. Scandinavian Journal Sports Sciences, 5, 50–55.
  • Khlifa, R., Aouadi, R., Hermassi, S., Chelly, M.S., Jlid, M.C., Hbacha, H., y Castagna, C. (2010). Effects of a plyometric training program with and without added load on jumping ability in basketball players. Journal of Strength and Conditioning Research, 24(11), 2955-2966. https://doi.org/10.1519/JSC.0b013e3181e37fbe PMid:20938357
  • Komi, P.V. (1984). Physiological and biomechanical correlates of muscle function: Effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sport Sciences Reviews, 12, 81-121. https://doi.org/10.1249/00003677-198401000-00006 PMid:6376140
  • Lees, A., Vanrenterghem, J., y De Clercq, D. (2004). Understanding how an arm swing enhances performance in the vertical jump. Journal of Biomechanics, 37, 1929-1940. https://doi.org/10.1016/j.jbiomech.2004.02.021 PMid:15519601
  • Markovic, G., y Jaric, S. (2007). Positive and negative loading and mechanical output in maximum vertical jumping. Medicine and Science in Sports and Exercise, 39(10), 1757–1764. https://doi.org/10.1249/mss.0b013e31811ece35 PMid:17909403
  • McBride, J.M., Kirby, T.J., Hainess, T.L., y Skinner, J. (2010). Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. International Journal of Sports Physiology and Performance, 5, 484-496. https://doi.org/10.1123/ijspp.5.4.484
  • Peng, H.T. (2011). Changes in Biomechanical properties during drop jumps of incremental height. Journal of Strength and Conditioning Research, 25(9), 2510-2518. https://doi.org/10.1519/JSC.0b013e318201bcb3 PMid:21869631
  • Schmidt R.A., y Lee, T.D. (2011). Motor control and learning: A behavioral emphasis (5 th ed.). Champain, IL: Human Kinetics.
  • Shoepe, T.C., Stelzer, J.E., Garner, D.P., y Widrick, J.J. (2003) Functional adaptability of muscle fibers to long-term resistance exercise. Medicine & Science in Sports & Exercise, 35(6), 944–951. https://doi.org/10.1249/01.MSS.0000069756.17841.9E PMid:12783042
  • Stone, M.H., O'Bryant H.S., McCoy, L., Coglianese, R., Lehmkuhl, M., y Schilling, B. (2003). Power and maximum strength relationships during performance of dynamic and static weighted jumps. Journal of Strength and Conditioning Research, 17(1), 140–147. https://doi.org/10.1519/00124278-200302000-00022
  • Thompsen, A.G., Kackley, T., Palumbo, M.A., y Faigenbaum, A.D. (2007). Acute effects of different warm-up protocols with and without a weighted vest on jumping performance in athletic women. Journal of Strength and Conditioning Research, 21(1), 52-56. https://doi.org/10.1519/00124278-200702000-00010 PMid:17313270
  • Wallace, B.J., Kernozek, T.W., Write, J.M., Kline, D.E., Wright, G.A., Peng, H., y Huang, C. (2010). Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. Journal of Strength and Conditioning Research, 24(1), 207-212 https://doi.org/10.1519/JSC.0b013e3181c3b841 PMid:19924006
  • Winter, D.A. (1990). Biomechanics and Motor Control of Human Movement (2nd ed.). New York: Wiley Interscience.
  • Wood, G.A., y Jennings, L.S. (1979). On the use of spline functions for data smoothing. Journal of Biomechanics, 12, 477-479. https://doi.org/10.1016/0021-9290(79)90033-2
  • Zatsiorsky, V.M., y Seluyanov, N.V. (1983). The mass and inertial characteristics of the main segments of the human body. In: Biomechanics VIII-B. Matsui, H. and K. Kobayashi (Eds) Champaign, I.L: Human Kinetics, 1152-1159.