Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability

  1. G. Cultrone
  2. V. Sánchez-Ibáñez
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2018

Volumen: 68

Número: 332

Tipo: Artículo

DOI: 10.3989/MC.2018.12817 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

Se ha evaluado la capacidad consolidante del silicato de etilo en tres tipos de ladrillos cocidos a 800, 950 y 1100 °C. Se eligieron dos concentraciones de producto, al 25% y 50%, diluyéndolo en white spirit para estimar si más dilución favorece una penetración más en profundidad del producto o si una mayor concentración produce una mejor consolidación de los ladrillos. El silicato de etilo ha causado una disminución de la porosidad y un aumento de la compacidad de los ladrillos, acentuándose estas modificaciones con mayor concentración de producto. La distribución porométrica no ha cambiado de forma sustancial, disminuyendo los poros más pequeños. Color y luminosidad de las piezas han modificado ligeramente tras la aplicación del consolidante. Los ladrillos consolidados han mejorado su durabilidad frente al envejecimiento acelerado producido por las sales. En general, las piezas más duraderas han resultado ser las tratadas con el 25% de silicato de etilo.

Información de financiación

This study was financially supported by Research Group RNM179 of the Junta de Andalucía and by Research Project MAT2016-75889-R. We thank C.T.S. srl for providing the ESTEL 1000 used to consolidate the brick samples. We are also grateful to Nigel Walkington for his assistance in translating the original text and to two anonymous referees for their in-depth review.

Referencias bibliográficas

  • Winkler, E. M. (1973) Stone: properties, durability in man's environment. Springer, New York. https://doi.org/10.1007/978-3-7091-4120-5
  • Alves, C.; Sanjurjo Sánchez, J. (2015) Maintenance and Conservation of Materials in the Built Environment. In: Pollutants in Buildings, Water and Living Organisms (Lichtfouse E., Schwarzbauer J., Robert D. eds.). Springer, Cham, pp. 1–50. https://doi.org/10.1007/978-3-319-19276-5_1
  • Lazzarini, L.; Laurenzi Tabasso, M. (1986) Il restauro della pietra. CEDAM, Padova.
  • Snethlage, R. (2014) Stone Conservation. In: Stone in architecture. Properties, duarability (Siegesmund, S. and Snethlage, R. eds.). Springer, Berlin, pp. 415–550. https://doi.org/10.1007/978-3-642-45155-3_7
  • Sierra Fernandez, A.; Gomez Villalba, L. S.; Rabanal, E. M. E.; Fort, R. (2017) New nanomaterials for application and restoration of stony materials: a review. Mater. Construcc. 67, e107. https://doi.org/10.3989/mc.2017.07616
  • Esbert, R. M.; Grossi, C.; Marcos, R. M. (1987) Estudios experimentales sobre la consolidación y protección de los materiales calcáreos de la Catedral de Oviedo. 1ª parte. Mater. Construcc. 37, 17–25. https://doi.org/10.3989/mc.1987.v37.i206.867
  • Esbert, R. M.; Díaz Pache, F. (1993) Influencia de las características petrofísicas en la penetración de consolidantes en rocas monumentales porosas. Mater. Construcc. 43, 25–36. https://doi.org/10.3989/mc.1993.v43.i230.681
  • Cultrone, G.; Madkour, F. (2013) Evaluation of the effectiveness of treatment products in improving the quality of ceramics used in new and historical buildings. J. Cult. Herit. 14, 304–310. https://doi.org/10.1016/j.culher.2012.08.001
  • Marques, M. L.; Chastre, C. (2014) Effect of consolidation treatments on mechanical behaviour of sandstone. Constr. Build. Mater. 70, 473–482. https://doi.org/10.1016/j.conbuildmat.2014.08.005
  • Cnudde, V.; Dierick, M.; Masschaele, B.; Jacobs P. J. (2006) A high resolution view at water repellents and consolidants: critical review and recent developments. In: fracture and failure of natural building stones (Kourkoulis, S. K. ed.), Springer, Dordrecht, pp. 519–540. https://doi.org/10.1007/978-1-4020-5077-0_32
  • Warren, J. (1999) Conservation of brick. Butterworth Heinemann, Oxford, UK.
  • Manning, D. A. C. (1995) Introduction to industrial minerals. Chapman & Hall, London, UK. https://doi.org/10.1007/978-94-011-1242-0
  • Cultrone, G.; Sebastián, E.; Elert, K.; Torre, M. J. de la; Cazalla, O.; Rodríguez Navarro, C. (2004) Influence of mineralogy and firing temperature on porosity of bricks. J. Eur. Ceram. Soc. 24, 547–564. https://doi.org/10.1016/S0955-2219(03)00249-8
  • Mu-oz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Mu-oz Velasco, L. (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material. A review. Constr. Build. Mater. 63, 97–107. https://doi.org/10.1016/j.conbuildmat.2014.03.045
  • Cultrone, G.; Rodriguez Navarro, C.; Sebastián, E.; Cazalla, O.; Torre, M. J. de la (2001) Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 13, 621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621
  • Grapes, R. (2006) Pyrometamorphism. Springer, Berlin, Germany. PMCid:PMC1456285
  • Liu, R.; Han, X.; Huang, X.; Li, W.; Luo, H. (2013) Preparation of three component TEOS-based composites for stone conservation by sol-gel process. J Sol-Gel Sci. Technol. 68, 19–30. https://doi.org/10.1007/s10971-013-3129-z
  • Villegas Sánchez, R.; Baglioni, R.; Same-o Puerto, M. (2003) Tipología de materiales para tratamiento. In: Cuadernos Técnicos vol. 8: Metodología de diagnóstico y evaluación de tratamientos para la conservación de los edificios históricos (Villegas Sánchez R. y Sebastián Pardo E., eds.), Comares, Granada, Spain, pp. 168–193.
  • Scherer, G. W.; Wheeler, G. S. (2009) Silicate consolidants for stone. Key Eng. Mater. 391, 1–25. https://doi.org/10.4028/www.scientific.net/KEM.391.1
  • Franzoni, E.; Graziani, G.; Sassoni, E. (2015) TEOSbased treatments for stone consolidation: acceleration of hydrolysis-condensation reactions by poulticing. J. Sol- Gel Sci. Technol. 74, 398–405. https://doi.org/10.1007/s10971-014-3610-3
  • Franzoni, E.; Pigino B.; Leemann, A.; Lura P. (2014) Use of TEOS for fired-clay bricks consolidation. Mater. Struct. 47, 1175–1184. https://doi.org/10.1617/s11527-013-0120-7
  • Franzoni, E.; Graziani, G.; Sassoni, E.; Bacilieri, G.; Griffa, M.; Lura, P. (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration deep, efficacy and pore occlusion. Mater. Struct. 48, 3503–3515. https://doi.org/10.1617/s11527-014-0417-1
  • Torraca, G. (2009) Lectures on materials science for architectural conservation. The Getty Conservation Institute, Los Angeles, USA.
  • Elert, K.; Sebastián Pardo, E.; Rodriguez Navarro, C. (2015) Alkaline activation as an alternative method for the consolidation of earthen architecture. J. Cult. Herit. 16, 461–469. https://doi.org/10.1016/j.culher.2014.09.012
  • Bermúdez Sánchez, C.; Rueda Quero, L.; Cultrone, G. (2012) Caracterización de los yacimientos de arcilla en la provincial de Granada aplicada al conocimiento de los bienes de interés histórico-artístico. Proceedings of the I International Congress "El Patrimonio Natural como Motor de Desarrollo: Investigación e Innovación" (Peinado Herreros M. A. ed.), 728–740.
  • De Rosa, B.; Cultrone, G. (2014) Assessment of two clayey materials from northwest Sardinia (Alghero district, Italy) with a view to their extraction and use in traditional brick production. Appl. Clay Sci. 88–89, 100–110. https://doi.org/10.1016/j.clay.2013.11.030
  • Martin, J. D. (2016) XPowder, XPowder12, XPowderXTM. A software package for powder X-ray diffraction analysis, Lgl. Dp. GR-780–2016.
  • ASTM D2845. (2005) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constant of rock, USA.
  • Guydader, J.; Denis, A. (1986) Propagation des ondes dans les roches anisotropies sous contrainte évaluation de la qualité des schistes ardoisers. Bull. Eng. Geol. 33 49–55. https://doi.org/10.1007/BF02594705
  • EN 15886. (2011) Conservation of cultural property. Test methods. Colour measurement of surfaces, AENOR, Madrid.
  • EN 12370. (2001) Metodi di prova per pietre naturali. Determinazione della resistenza alla cristallizzazione dei sali. CNR-ICR, Rome, Italy.
  • Espinosa Marzal, R.M.; Hamilton, A.; McNall, M.; Whitaker, K.; Scherer, G.W. (2011) The chemomehanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J. Mater. Res. 26, 1472–1481. https://doi.org/10.1557/jmr.2011.137
  • Martinez, P.; Soto, M.; Zunino, F.; Stuckrath, C.; Lopez, M. (2016) Effectiveness of tetra-ethyl-ortho-silicate (TEOS) consolidation of fired-clay bricks manufactured with different calcination temperatures. Constr. Build. Mater. 106, 209–217. https://doi.org/10.1016/j.conbuildmat.2015.12.116
  • Kingery, W. D. (1960) Introduction to ceramics. John Wiley & Sons, Inc., New York.
  • Ediz, N.; Bentli, I.; Tatar, I. (2010) Improvement in filtration characteristics of diatomite by calcination. Int. J. Miner. Process. 94, 129–134. https://doi.org/10.1016/j.minpro.2010.02.004
  • Ferraz, E.; Coroado, J.; Silva, J.; Gomes, C.; Rocha, F. (2011) Manufacture of ceramic bricks using recycled Brewing spent kieselguhr. Mater. Manuf. Processes 26, 1319–1329. https://doi.org/10.1080/10426914.2011.551908
  • Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2008) Stone consolidation: the role of treatment procedures. J. Cult. Herit. 9, 38–53. https://doi.org/10.1016/j.culher.2007.06.004
  • Costa, D.; Leal, A. S.; Mimoso, J. M.; Pereira, S. M. R. (2017) Consolidation treatments applied to ceramic tiles: are they homogeneous? Mater. Construcc. 67, e113. https://doi.org/10.3989/mc.2017.09015
  • Bourret, J.; Tesser Doyen, N.; Guinebretiere, R.; Joussein, E.; Smith, D.S. (2015) Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment. Appl. Clay Sci. 116–117, 150–157. https://doi.org/10.1016/j.clay.2015.08.006
  • Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2012) Consolidation of carbonate stones: influence of treatment procedures on the strengthening of consolidants. J. Cult. Herit. 13, 154–166. https://doi.org/10.1016/j.culher.2011.07.003
  • Esbert, R. M.; Ordaz, J.; Alonso, F. J.; Montoto, M. (1997) Manual de diagnosis y tratamiento de materiales pétreos y cerámicos. Col.legi d'Aparelladors i Arquitectes Tècnics de Barcelona.
  • Rodriguez Navarro, C.; Cultrone, G.; Sanchez Navas, A.; Sebastián , E. (2003) TEM study of mullite growth after muscovite breakdown. Am. Mineral. 88, 713–724. https://doi.org/10.2138/am-2003-5-601
  • Papargyris, A.D.; Cooke, R.G.; Papargyri, S.A.; Botis, A.I. (2001) The acoustic behavior of bricks in relation to their mechanical behavior. Constr. Build. Mater. 15, 361–369. https://doi.org/10.1016/S0950-0618(01)00007-1
  • Rye, O.S. (1976) Keeping your temper under control: materials and manufacture of Papuan pottery. Archeol. Phys. Anthropol. Oceania 11, 106–137.
  • Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. (2007) Color changes in architectural limestones from pollution and cleaning, Color Res. Appl. 32, 320–331. https://doi.org/10.1002/col.20322
  • Dohene, E.; Price, C.A. (2010) Stone conservation. An overview of current research. The Getty Conservation Institute, Los Angeles, USA.
  • Inkpen, R. J.; Petley, D.; Murphy, W. (2004) Durability and rock properties. In: Stone decay. Its causes and controls (Smith B. J. and Turkington A. V. eds.). Donhead Publishing Ltd., Routledge, Abingdon, UK. PMid:15534554