Differential effects of intensity and response preparation components of acoustic warning signals

  1. Paola Cappucci 1
  2. Ángel Correa 1
  3. Pedro Guerra 1
  4. Juan Lupiáñez 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2018

Volumen: 39

Número: 2

Páginas: 292-318

Tipo: Artículo

DOI: 10.2478/PSICOLJ-2018-0013 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

It is known that the increase of intensity on a warning signal (WS) usually decreases reaction times to targets and occasionally is accompanied by a startle reflex reaction that influences the speediness of response execution. In a simple detection task (Experiment 1), a detection task with catch trials (Experiment 2) and a Go-NoGo discrimination task (Experiment 3), we studied the relationship between response preparation and alerting mechanisms operating upon the presentation of warning signals. A WS was presented either synchronously with the target (simultaneous condition) or 1400 ms before it (delayed condition). In all three experiments, the intensity of the WS and the simultaneity between WS and target were orthogonally manipulated. Results confirmed shorter reaction times by increasing the WS intensity. In Experiment 1, all conditions presented a clear acoustic intensity effect. In Experiment 2 we observed shorter reaction times in higher intensity conditions but only when the WS and the target were presented simultaneously. In Experiment 3, the intensity effect was observed only when the WS preceded the target. In all experiments, trials where the WS triggered a startle reflex showed a systematic increase in reaction time, which was independent of response preparation and task demands. In general, our findings suggest that response preparation modulates the alerting mechanisms, as a function of task set, but not the startle reflex. The dissociation between intensity, response preparation and startle supports the interdependence between these mechanisms elicited by the presentation of warning signals.

Referencias bibliográficas

  • Aasen Håberg A. K. Olsen A. Brubakk A. Evensen K. A. I. Sølsnesg A. E. Skranes J. & Brunner J. F. (2016). The relevance of the irrelevant: Attention and task-set adaptation in prematurely born adults. Clinical Neurophysiology 127 (10) 3225-3233.
  • Angel A. (1973). Input-output relations in simple reaction time experiments. Quarterly Journal of Experimental Psychology 25 193-200.
  • Balaban M. Losito B. Simons R. F. & Graham F.K. (1986). Off-line latency and amplitude scoring of the human reflex eye blink with Fortran IV. Psychophysiology 23 p. 612.
  • Blumenthal T. D. Cuthbert B. N. Filion D. L. Hackley S. Lipp O. V. & van Boxtel A. (2005). Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology42(1) 1-15.
  • Boksem M. A. S. Meijman T. F. Lorist M. M. (2005). Effects of mental fatigue on attention: An ERP study. Cognitive Brain Research 25 107 – 116.
  • Burle B. Tardonnet C. & Hasbroucq T. (2010). Excitatory and inhibitory motor mechanisms of temporal preparation. In Nobre A. C. & Coull J. T. Attention and Time pp. 243-255. Oxford University Press Inc. New York.
  • Bradley M. M. & Sabatinelli D. (2003). Startle reflex modulation: perception attention and Emotion. In Hugdahl K. Experimental methods in neuropsychology. Kluwer Academic Pub.; 2002.
  • Carlsen A. N. Chua R. Inglis J. T. Sanderson D. J. & Franks I. M. (2004). Prepared movement are elicited early by startle. Journal of Motor Behavior36(3) 253-264.
  • Carlsen A. N. Dakin C. J. Chua R. & Franks I. M. (2007). Startle produces early response latencies that are distinct from stimulus intensity effects. Experimental Brain Research176(2) 199-205.
  • Carlsen A. N. Chua R. Dakin C. J. Sanderson D. J. Inglis J. T. & Franks I. M. (2008). Startle reveals an absence of advance motor programming in a Go/No-go task. Neuroscience letters434(1) 61-5.
  • Carlsen A. N. Maslovat D. Lam M. Y. Chua R. & Franks I. M. (2011). Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neurocience and Biobehavioral Reviews 35 (3) 366-376.
  • Correa A. Cappucci P. Nobre A. C. & Lupiáñez J. (2010). The two sides of temporal orienting: facilitating perceptual selection disrupting response selection. Experimental psychology57(2) 142-8.
  • Correa A. Lupiáñez J. Milliken B. & Tudela P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception and Psychophysics 66(2) 264-278.
  • Correa A. Lupiáñez J. Madrid E. & Tudela P. (2006). Temporal attention enhances early visual processing: A review and new evidence from event-related potentials. Brain Research 1076(1) 116-128.
  • Cousineau D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method Tutorial in Quantitative Methods for Psychology 1(1) 42-45.
  • Cressman E. K. Carlsen A. N. Chua R. & Franks I. M. (2006). Temporal uncertainty does not affect response latencies of movements produced during startle reactions. Exp Brain Res171(2) 278-282.
  • Davis M. The Mammalian Startle Response. In Eaton R. C. Neural Mechanisms of Startle Behavior Springers US; 1984.
  • Drummond N. M. Leguerrier A. & Carlsen A. N. (2016). Foreknowledge of an impending startling stimulus does not affect the proportion of startle reflexes or latency of StartReact responses. Experimental Brain Research doi:10.1007/s00221-016-4795-1.
  • Gabay S. & Henik A. (2008). The effects of expectancy on inhibition of return. Cognition 106(3) 1478-1486.
  • Hackley S. A. (2009). The speeding of voluntary reaction by a warning signal. Psychofisiology 46 (2) 225-233.
  • Hackley S. A. & Valle-Inclán F. (2003). Which stages of processing are speeded by a warning signal? Biological Psychology64(1-2) 27-45.
  • Jarosz A. & Wiley J. (2014) “What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors” The Journal of Problem Solving 7 (1) 2-9.
  • Jasp (2017). Retrieved from http://jasp-stats.org/
  • Jaskowski P. Rybarczyk K. & Jaroszyk F. (1994). The relationship between latency of auditory evoked potentials simple reaction time and stimulus intensity. Psychological Research 56(2) 59-65.
  • Jaskoswki P. & Wlodarczyk D. (2006). Task modulation of the effects of brightness on reaction time and response force. International Journal of Phychophysiology 61(2) 98-112.
  • Kohfeld D. L. (1971). Simple reaction time as a function of stimulus intensity in decibels of light and sound. Journal of Experimental Psychology 88(2) 251-257.
  • Lalor E. C. Kelly S. P. Pearlmutter B. A. Reilly R. B. & Foxe J. J. (2007). Isolating endogenous visuo-spatial attentional effects using the novel visual-evoked spread spectrum analysis (VESPA) technique. European Journal of Neuroscience 26(12) 3536–3542. Google Scholar
  • Lang P. J. Bradley M. M. & Cuthbert B. N. (1990). Emotion Attention and the Startle Reflex. Psychological Review 97 (3) 377-395. Google Scholar
  • Ledgeway T. & Hutchinson C. V. (2008). Choice reaction times for identifying the direction of first-order motion and different varieties of second-order motion. Vision Research 48 (2) 208-222. Google Scholar
  • Lipp O.V. Kaplan D.M. & Purkis H. M. (2006). Reaction time facilitation by acoustic task-irrelevant stimuli is not related to startle. Neuroscience Letters 409 pp. 124–127. Google Scholar
  • Lipp O. V. & S.A. Hardwick S. A. (2003). Attentional blink modulation in a reaction time task: performance feedback warning stimulus modality and task difficulty. Biological Psychology 62 pp. 115–132. Google Scholar
  • Mather M. & Sutherland M. R. (2010). Arousal-Biased Competition in Perception and Memory. Perspective on Psychological Science 6(2) 114-133. Google Scholar
  • Marinovic W. & Tresilian J. R. (2016). Triggering prepared actions by sudden sounds: reassessing the evidence for a single mechanism. Acta Psychologica 217 13-32. Google Scholar
  • Maslovat D Drummond N. M. Carter M. J. and Carlsen A. N. (2015). Reduced motor preparation during dual-task performance: evidence from startle. Experimental Brain Research 233(9) 2673-83. Google Scholar
  • Miller J. Franz V. Ulrich R. (1999). Effects of auditory stimulus intensity on response force in simple go/no-go and choice RT tasks. Perception & Psychophysic 61(1) 107-19. Google Scholar
  • Petersen A. Petersen A. H. Bundesen C. Vangkilde S. and Habekost T. (2017). The effect of phasic auditory alerting on visual perception. Cognition 165 73-81. Google Scholar
  • Posner M. I. & Petersen S. E. (1990). The attention system of the human brain. Annual review of neuroscience13 25-42. Google Scholar
  • Posner Michael I. (2008). Measuring alertness. Annals of the New York Academy of Sciences1129 193-199. Google Scholar
  • Schneider W. Eschman A. & Zuccolotto A. (2002) E-Prime User’s Guide. Pittsburgh: Psychology Software Tools Inc. Google Scholar
  • Sturm W. & Willmes K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage14(1 Pt 2) S76-84. Google Scholar
  • Triviño M. Correa A. Arnedo M. & Lupiàñez J. (2010). Temporal orienting deficit after prefrontal damage. Brain 133 1173-1185. Google Scholar
  • Ulrich R. Rinkenauer G. & Miller J. (1998). Effects of stimulus duration and intensity on simple reaction time and response force. Journal of Experimental Psychology: Human Perception and Performance 24 (3) 915-928. Google Scholar
  • Valls-Solé J. Valldeoriola F. Molinuevo J. L. Cossu G. & Nobbe F. (1999). Prepulse modulation of the startle reaction and the blink reflex in normal human subjects. Experimental Brain Research 129(1) 49-56. Google Scholar
  • Valls-Solé J. Kofler M. Kumru H. Castellote J. M. Sanegre M. T. (2005). Startle-induced reaction time shortening is not modified by prepulse inhibition. Experimental Brain Research 165 (2005) 541–548. Google Scholar
  • Van der Molen M. W. Bashore T. R. Halliday R. & Callaway E. (1991). Chronopsychophysiology: mental chronometry augmented by psychophysiological time markers. In Jennings J. & Coles M. (Eds.) Handbook of Cognitive Psychophysiology Central and Autonomic Nervous System Approaches pp. 9-178. Wiley New York. Google Scholar
  • Van de Schoot R. Broere J. J. Perryck K. H. Zondervan-Zwijnenburg M. and van Loey N. E. (2015). Analyzing small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology 6. Google Scholar
  • Wagenmakers E. J. Love J. Marsman M. Jamil T. Ly A. Verhagen Selker R. Gronau Q. F. Dropmann Bruno Boutin B. Meerhoff F. Knight P. Akash Raj A. van Kesteren E. van Doorn J. Martin Šmíra M. Epskamp S. Etz A. Matzke D. de Jong T. van den Bergh D. Sarafoglou A. Steingroever H. Derks K. Rouder J. N. & Morey R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin Review25(1) 58-76. Google Scholar
  • Washington J. R. & Blumenthal T. D. (2015). Effect of a startle stimulus on response speed and inhibition in a go/no-go task. Psychophysiology 52 (6) 745-753. Google Scholar
  • Watanabe T. Koyama S. Tanabe S. & Nojiba I. (2015). Accessory stimulus modulates executive function during stepping task. Journal of Neurophysiology 11 419-426. Google Scholar
  • Weinbach N. & Henik A. (2012). Temporal orienting and alerting: the same or different? Frontiers in Psychology 3 236-241. Google Scholar