La hoja de ruta de la ingeniería de computadores al final de la ley de Moore y el escalado de Dennard

  1. Julio Ortega 1
  2. Mancia Anguita 1
  3. Alberto Prieto 1
  4. Antonio Cañas 1
  5. Miguel Damas 1
  6. Antonio F. Díaz 1
  7. Javier Fernández 1
  8. Jesús González 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Journal:
Enseñanza y aprendizaje de ingeniería de computadores: Revista de Experiencias Docentes en Ingeniería de Computadores

ISSN: 2173-8688

Year of publication: 2019

Issue: 9

Pages: 5-28

Type: Article

More publications in: Enseñanza y aprendizaje de ingeniería de computadores: Revista de Experiencias Docentes en Ingeniería de Computadores

Abstract

This paper reviews the state of Computer Engineering at the beginning of the 2020s in order to outline some of the changes that should be established in higher education in this discipline. It is considered the great relevance of controlling energy consumption and applications related to classification and optimization that require huge amounts of data (big data) and response times difficult to achieve using traditional techniques of computer engineering, and given the reduction of the improvement rate set by Moore's law and the end of Dennard scaling. The article also provides recent bibliographical references on the situation of Computer Engineering, and identifies the new requirements of the interfaces present in the hierarchy of layers of computer systems, mainly those related to security, energy consumption, and the use of heterogeneous parallelism. It also reflects on the theoretical limits that can be established for computation and the expectations that quantum computation offers.

Bibliographic References

  • 21st Century Computer Architecture. A community whitepaper, https://cra.org/ccc/wpcontent/uploads/sites/2/2015/05/21stcenturyarchitecturewhitepaper.pdf, 2012.
  • Almudever, C.G.; et al.:”The engineering challenges in Quantum Computing”. IEEE 2017 Design, Automation and Test in Europe (DATE), pp.837-845. 2017.
  • Bourianoff, G.; Brewer, J.E.; Cavin, R.; Hutch, J. A.; Zhirnov; V.:”Boolean Logic and alternative information-processing devices”. IEEE Computer, pp. 38-46, 2008.
  • Chien, A.: “Computer Architecture: disruption from above”. Communications of the ACM, Vol. 81, No.9, pp.5, Septiembre, 2018.
  • Conte, T.M.; DeBenedictis, E.P.; Gargini, P. A.; Track, E.: “Rebooting Computing: The Road Ahead”. Computer, pp. 20-29. Enero, 2017.
  • Díaz García, A.F.; et al. Consumo de energía y asignaturas de arquitectura y tecnología de computadores. Enseñanza y Aprendizaje de Ingeniería de Computadores, 7: 79-92 (2017). http://hdl.handle.net/10481/47374
  • Fowler, et al.:”Surface code: Towards practical large-scale quantum computation. Phys. Rev. A., 86(3):032324, 2012.
  • Guías docentes del Grado en Ingeniería Informática de la Universidad de Granada: http://grados.ugr.es/informatica/pages/infoacademica/guias_docentes/guiasdocentes_curso_actual.
  • Hennessy, J.L.; Patterson, D. A.: “Computer Architecture: A quantitative approach (Sixth Edition)”. Morgan Kaufmann, 2019.
  • Hennessy, J; Patterson, D.:”2017 Turing Award Lecture” (ISCA 2018). https://www.acm.org/hennessy-patterson-turing-lecture.
  • IEEE/ACM Computer Engineering Curricula 2016: http://www.acm.org/education/curricula-recommendations.
  • Jones, N.C., et al.: “Layered architecture for quantum computing”. arXiv:10105022v3, 2012.
  • Jouppi, N.P. et al.:”In-Datacenter performance analysis of a Tensor Processing Unit”. 44th Symp. On Computer Architecture (ISCA). Junio, 2017.
  • Kocher, P., et al.:”Spectre attacks: exploiting speculative execution”, 2018.
  • Landauer, R.: "Irreversibility and heat generation in the computing process”. IBM J., pp.183- 191, 1961.
  • Lipp, M., et al.: “Meltdown”, 2018.
  • Lloyd, S.: "Ultimate physical limits to computation”. arXiv: quant-ph/9908043v3, 14 Feb 2000
  • Margolus, N.; Levitin, L.B.: "The maximum speed of dynamical evolution”. Physica D: Nonlinear Phenomena 120 (1-2), pp.188-195, 1998.
  • Ortega, J.; Anguita, M.; Prieto, A.: "Arquitectura de Computadores”. Ed. Thomson Paraninfo, 2005.
  • Plenio, M. B.; Vitelli, V.: "The physics of forgetting: Landauer’s erasure principle and information theory”. Contemporary Physics, Vol.42, No.1, pp.25-60, 2001.
  • Xu.; et al.: "A heterogeneous quantum computer architecture”, ACM CF’16, pp.323-330, 2016.