Patrones de acceso a la banca digitalaproximaciones tradicionales, aprendizaje automático y neuroeconomía

  1. Santiago CARBÓ VALVERDE 12
  2. Francisco RODRÍGUEZ FERNÁNDEZ 13
  1. 1 Observatorio de la Digitalización Financiera de Funcas
  2. 2 Bangor University
    info

    Bangor University

    Bangor, Reino Unido

    ROR https://ror.org/006jb1a24

  3. 3 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Papeles de economía española

ISSN: 0210-9107

Año de publicación: 2019

Número: 162

Páginas: 14-26

Tipo: Artículo

Otras publicaciones en: Papeles de economía española

Resumen

Este artículo analiza los patrones que determinan la adopción y el uso frecuente de servicios financieros digitales entre los usuarios bancarios. Se realiza un ejercicio comparativo de las aportaciones econométricas tradicionales con otros dos métodos de análisis de información más recientes. En primer lugar, el aprendizaje automático (machine learning), con el objetivo de analizar la secuencia de decisiones que se sigue hasta convertirse en un usuario de servicios digitales financieros. Los resultados de este análisis sugieren que la consciencia sobre la gama de posibilidades de uso online y la consulta de información preceden a un uso frecuen- te de canales digitales para realizar transacciones. En segundo lugar, un análisis de resonancia magnética funcional para identificar si existen patrones neurológicos que expliquen diferencias entre los individuos en relación a su grado de digitalización financiera. Los resultados indican que existen patrones biológicos que pueden explicar diferencias en la predisposición a adoptar medios financieros digitales.

Referencias bibliográficas

  • Alalwan, A., Dwivedi, Y. K. y Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), pp. 99-110.
  • Aldás Manzano, J., Lassala Navarré, C., RuizMafé, C. y Sanz Blas, S. (2009). Key drivers of internet banking services use. Online Information Review, 33(4), pp. 672-695.
  • Bagozzi, R. P. (2007). The Legacy of the Technology Acceptance Model and a Proposal for a Paradigm Shift. Journal of the Association for Information Systems, 8(4), pp. 244- 254.
  • Bart, Y., Shankar, V., Sultan, F. y Urban, G. L. (2005). Are the drivers y role of online trust thesame for all web sites y consumers? A large-scale exploratory empirical study. Journal of Marketing, 69, pp. 133-152.
  • Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U. y Fehr, E. (2008). Oxytocinshapes the neural circuitry of trust y trust adaptation in humans. Neuron, 58(4), pp. 639- 650.
  • Benartzi, S. y Thaler, R. (2007). Heuristics y biases in retirement savings behavior. Journal of Economic Perspectives, 21, pp. 81-104.
  • Bishop, C. M. (2016). Pattern Recognition and Machine Learning. Information Science and Statistics, Vol. 53.
  • Breiter, H. C., Aharon, I., Kahneman, D, Dale, A. P. y Shizgal, P. (2001). F u n c t i o n a l i m a g i n g o f n e u r a l responses to expectancy and experience of monetary gains and losses. Neuron, 30, pp. 619-639.
  • Camerer, C., Loewenstein, G. y Prelec, D. (2005). Neuroeconomics: how neuroscience can inform economics. Journal of Economic Literature, 43, pp. 9-64 . Campbel l , J. Y. (2006). Household finance. Journal of Finance, 61, pp. 1553-1604.
  • Campbel l , J. Y. (2016). Restoring rational choice: the challenge of consumer financial regulation. American Economic Review, 106, pp. 1-30.
  • Campbell, D. y Frei, F. (2010). Cost Structure, Customer Profitability, and Retention Implications of Self-Service Distribution Channels: Evidence from Customer Behavior in an Online Banking Channel. Management Science, 56(1), pp. 4-24.
  • Carbó Valverde, S., Cuadros, P. y Rodríguez, F. (2019). A machine learning approach to the digitalization of bank customers: evidence from random and causal forests, https:// www.ssrn.com/abstract=3195286
  • Carbó Valverde, S., Lacomba, J., Lagos, F., Rodríguez. F. y Verdejo, J. (2019). A neurological characterization of financial digitalization. Mimeo.
  • Casaló, L. V., Flavián, C. y Guinalíu, M. (2007). The role of security, privacy, usability and reputation in the development of online banking. Online Information Review, 31(5), pp. 583-603.
  • Cheng, T. C. E., Lam, D. Y. C., y Yeung, A. C. L.(2006). Adoption of Internet Banking: An Empirical Study in Hong Kong. Decision Support Systems, 42(3), pp. 1558-1572.
  • Dahlberg, T., Guo, J. y J. Ondrus (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), pp. 265-284.
  • Davis, F. D., Bagozzi, R. P. y Warshaw, P. R.(1989). User Acceptance o f C o m p u t e r T e c h n o l o g y : A Comparison of Two Theoretical Models. Management Science, 35(8), pp. 982-1003.
  • Delgado, M. R., Frank, R. H. y Phelps, E. A. (2005), Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), pp. 1611-1618.
  • Dimoka, A. (2010). What does the brain tell us about trust y distrust? E v i d e n c e f r o m a f u n c t i o n a l neuroimaging study. MIS Quarterly, 34(2), pp. 373-396.
  • Elliott, R., Friston, K. J. y Dolan, D. J. (2000). Dissociable neural responses in human reward systems. The Journal of Neuroscience, 20(16), pp. 6159-6165.
  • Fareri, D. S., Chang, L. J. y Delgado, M. R. (2012). Effects of direct social experience on trust decisions and neural reward circuitry. Frontiers in Neuroscience, 6(148), pp. 1-17.
  • Frydman, C. y Camerer, C. F. (2016). The psychology y neuroscience of financial decision making. Trends in Cognitive Sciences, 20, pp. 661-675.
  • Glimcher, P. (2002). Decisions, decisions, decisions: choosing a biological science of choice . Neuron, 36, pp. 323-332.
  • Glimcher, P. W. y Fehr, E. (2013). Neuroeconomics: Decision Making y the Brain. Elsevier Science, 2nd edition.
  • Häusler, A. N., Kuhnen, C. M., Rudorf, S. y Weber, B. (2018). Preferences and beliefs about financial risk taking mediate the association between anterior insula activation and selfreported real-life stock trading. Nature –Scient ific Reports, 8 (11207), pp. 1-13.
  • Hernández-Murillo, R., Llobet, G., y Fuentes, R. (2010). Strategic online banking adoption. Journal of Banking and Finance, 34(7), pp. 1650-1663.
  • Hoehle, H., Scornavacca, E. y Huff , S. (2012). Three decades of research on consumer adoption and utilization of electronic banking channels: A literature analysis. Decision Support Systems, 54(1), pp. 122-132.
  • Huang, J., Makoju, E., Newell, S. y Galliers, R. D. (2003). Opportunities to learn from «failure» with electronic commerce: A case study of electronic banking. Journal of Information Technology, 18(1), pp. 17-26.
  • Hubert, M., Florack, A., Linzmajer, M. y Kenning, P. (2013). Neural correlates of impulsive buying tendencies during perception of product packaging. Psychology & Marketing, 30(10), pp. 861-873.
  • Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner B. T. y Platt, M. L. (2006). Neuralsignatures of economic preferences for risk y ambiguity. Neuron, 49, pp. 766-775
  • Jaruwachirathanakul, B. y Fink, D. (2005). Internet banking adoption strategies for a developing country: the case of Thailand. Internet Research, 15(3), pp. 295-311.
  • Kesharwani, A. (2019). Do (how) digital natives adopt a new technology differently than digital immigrants? A longitudinal study. Information and Management (August 2016), pp. 103-170.
  • Keys, B. J. Pope, D. G. y Popec, J. C. (2016). Failure to refinance. Journal of Financial Economics, 122, pp. 482-499.
  • King-Casas, B., Tomlin, D., Anen, C., Came r e r , C.F. , Quar t z , S . R . y Montague, P. R. (2005). Getting to know you: reputation y trust in a two-person economic exchange. Science, 308(5718), pp. 78-83.
  • Knutson, B. y Bossaerts, P. (2007). Neural Antecedents of Financial Decisions. Journal of Neuroscience, 27, pp. 8174-8177.
  • Knutson, B., Fong, G., Bennett, S., Adams, C. y Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid eventrelated fMRI. Neuroimage, 18, pp. 263-272.
  • Krueger, F., McCabe , K., Mol l , J., Kriegeskorte, N., Zahn, R. y Strenziok, M. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences of the United States of America,104(50), pp. 20084-20089.
  • Kuhnen, C. M. y Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47(5), pp. 763-770.
  • Kuhnen, C. M. y Knutson, B. (2011). The Influence of Affect on Beliefs, Preferences, y Financial Decisions. Journal of Financial Quantitative Analysis, 46, pp. 605- 626.
  • L auk k anen, T . ( 2 0 1 6 ) . C o n s u m e r adoption versus rejection decisions i n s e e m i n g l y s i m i l a r s e r v i c e innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), pp. 2432- 2439.
  • Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), pp. 130-141.
  • Lu, M. T., Tzeng, G. H., Cheng, H. y Hsu, C. C. (2015). Exploring mobile banking services for user behavior in intention adoption: using new hybrid MADM model. Service Business, 9(3), pp. 541-565. Loureiro, S., Rüdiger Kaufmann, H. y S. Rabino (2014). Intentions to use and recommend to others. Online Information Review, 38(2), pp. 186- 208.
  • McKenna, B., Tuunanen, T. y Gardner, L. (2013). Consumers’ adoption of information services. Information and Management, 50(5), pp. 248- 257.
  • O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. y Dolan, R. J. (2004), Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 16(304) (5669), pp. 452-454.
  • Preuschoff , K., Bossaerts, P. y Quartz, S. R. (2006). Neural differentiation of expected reward y risk in human subcortical structures. Neuron, 51(3), pp. 381-390.
  • Pousttchi , K. y Dehnert, M. (2018). Exploring the digitalization impact on consumer decision-making in retail banking. Electronic Markets, 28(3), pp. 265-286.
  • Riedl, R., Mohr, P., Kenning, P., Davis, F. y Heekeren, H. (2014). Trusting humans y avatars: abrain imaging study based on evolution theory. Journal of Management Information Systems, 30(4), pp. 83-114.
  • Rudorf, S., Preuschoff , K. y Weber, B. ( 2 0 1 2 ) . N e u r a l C o r r e l a t e s o f Anticipation Risk Reflect Risk P r e f e r e n c e s . The Journal of Neuroscience, 32(47), pp. 16683- 16692.
  • Sonnemann, U. Camerer, C. F., Fox, C. R. y Langer, T. (2013). How psychological framing affects economic market prices in the lab and field. Proceedings of the National Academy of Sciences U.S.A., 110(29), pp. 11779-11784.
  • Susanto, A., Chang, Y. y Ha, Y. (2016). D e t e r m i n a n t s o f c o n t i n u a n c e intention to use the smartphone b a n k i n g s e r v i c e s . I n d u s t r i a l Management & Data Systems, 116(3), pp. 508-525.
  • SzopińSki, T. S. (2016). Factors affecting the adoption of online banking in Poland. Journal of Business Research, 69(11), pp. 4763-4768.
  • Tam, C. y Oliveira, T. (2019). Does culture influence m-banking use and individual performance? Information and Management, 56(3), pp. 356- 363.
  • Wang, Y. D. y Emurian, H. H. (2005). An overview of online trust: concepts, elements, y implications. Computers in Human Behavior, 21(1), pp. 105- 125.
  • Yoon, H. S. y Barker, L. M. (2013). Development of a quantitative model of the impact of customers’ personality and perceptions on Internet banking use. Computers in Human Behavior, 29(3), pp. 1133-1141.
  • Yusuf Dauda, S . y J . L e e ( 2 0 1 5 ) . Technology adoption: A conjoint analysis of consumers’ preference on future online banking services. Information Systems, 53, pp. 1-15.