Understanding SamplingA Summary of the Research

  1. Nuria Begué
  2. Karen Ruiz
  3. Carmen Batanero
  4. María Gea
Revue:
BEIO, Boletín de Estadística e Investigación Operativa

ISSN: 1889-3805

Année de publication: 2019

Volumen: 35

Número: 1

Pages: 49-78

Type: Article

D'autres publications dans: BEIO, Boletín de Estadística e Investigación Operativa

Références bibliographiques

  • [1] Allan, L. G. y Jenkins, H. M. (1980). The judgment of contingency and thenature of the response alternatives.Canadian Journal of Psychology,34,1-11.
  • [2] Alvarado, H., Galindo, M. y Retamal, L. (2013). Comprensi ́on de ladistribuci ́on muestral mediante configuraciones did ́acticas y su implicaci ́onen la inferencia estad ́ıstica.Ense ̃nanza de las Ciencias,31(2), 75-91.
  • [3] Bakker, A. (2004).Design research in statistics education: On symbolizingand computer tools. Utrecht, the Netherlands: Beta Press.
  • [4] Batanero, C. y Borovcnik, M. (2016).Statistics and probability in high school.Rotterdam: Sense Publishers.
  • [5] Batanero, C. y D ́ıaz, C. (2015). Aproximaci ́on informal al contraste dehip ́otesis. En J. M. Contreras, C. Batanero, J. D. Godino, G. R. Ca ̃nadas,P. Arteaga, E. Molina, M. M. Gea y M. M. L ́opez (Eds.),Did ́actica de laEstad ́ıstica, Probabilidad y Combinatoria,2, 135-144.
  • [6] Batanero, C., Serrano, L. y Garfield, J. (1996). Heuristics and biases insecondary students’ reasoning about probability. En L. Puig y A. Guti ́errez(Eds.),Proceedings of the 20th Conference of the International Group for thePsychology of Mathematics Education,2, pp. 43-50, Valencia: PME Group.
  • [7] Ben-Zvi, D., Bakker, A. y Makar, K. (2015). Learning to reason fromsamples.Educational Studies in Mathematics,88(3), 291-303.
  • [8] Begu ́e, N. (2016).Comprensi ́on de elementos b ́asicos de muestreoen estudiantes de educaci ́on secundaria obligatoria. Tesis de M ́aster.Universidad de Granada.
  • [9] Biggs, J. B., y Collis, K. F. (1982).Evaluating the quality of learning: TheSolo taxonomy. New York: Academic.
  • [10] Burrill, G. y Biehler, R. (2011). Fundamental statistical ideas in the schoolcurriculum and in training teachers. En C. Batanero, G. Burrill y C.Reading(Eds.),Teaching statistics in school mathematics. Challenges forteachingand teacher education–A joint ICMI/IASE Study. Dordrecht: Springer.
  • [11] Ca ̃nizares, M. J. (1997).Influencia del razonamiento proporcional ycombinatorio y de creencias subjetivas en las intuiciones probabil ́ısticasprimarias. Tesis doctoral. Universidad de Granada.
  • [12] Castro Sotos, A. E., Vanhoof, S., Noortgate, W. y Onghena, P. (2007).Students’s misconceptions of statistical inference: A review of the empiricalevidence from research on statistics education.Educational Research Review,2(2), 98-113.
  • [13] Chance, B., delMas, R. C. y Garfield, J. (2004). Reasoning about samplingdistributions. En D. Ben-Zvi y J. Garfield (Eds.),The challenge of developingstatistical literacy, reasoning and thinking(pp. 295-323). Amsterdam:Kluwer.
  • [14] Chernoff, E. J. y Russell, G. L. (2012). The fallacy of composition:Prospective mathematics teachers? use of logical fallacies.Canadian Journalfor Science, Mathematics and Technology Education,12(3), 259-271.http://dx.doi.org/10.1080/14926156.2012.704128
  • [15] D ́ıaz, C. (2003). Heur ́ısticas y sesgos en el razonamiento probabil ́ıstico.Implicaciones para la ense ̃nanza de la estad ́ıstica.Actas del 27 CongresoNacional de Estad ́ıstica e Investigaci ́on Operativa. L ́erida: Sociedad deEstad ́ıstica e Investigaci ́on Operativa. [CD- ROM].
  • [16] Falk, R. y Konold, C. (1997). Making sense of randomness: Implicitencoding as a basis for judgment.Psychological Review,104, 301-318.
  • [17] Garc ́ıa -R ́ıos, V. N. (2013). Inferencias estad ́ısticas informales enestudiantes mexicanos. J. M. Contreras, G. R. Ca ̃nadas, M. M. Gea yP. Arteaga (Eds.),Actas de las Jornadas Virtuales en Did ́actica de laEstad ́ıstica, Probabilidad y Combinatoria, 343-357.
  • [18] Garc ́ıa-R ́ıos, V. N. y S ́anchez, E. (2015). Dificultades en el razonamientoinferencial intuitivo. En J. M. Contreras, C. Batanero, J. D. Godino,G.R.Ca ̃nadas, P. Arteaga, E. Molina, M. M. Gea y M. M. L ́opez (Eds.),Did ́acticade la Estad ́ıstica, Probabilidad y Combinatoria, 2(pp. 207-214). Granada:SEIEM.
  • [19] Garfield, J. y Gal, I. (1999). Teaching and assessing statistical reasoning.En L. Stiff (Ed.),Developing mathematical reasoning in grades K-12(pp.207-219). Reston, VA: National Council Teachers of Mathematics.
  • [20] G ́omez, E., Batanero, C. y Contreras, C. (2014). Conocimiento matem ́aticode futuros profesores para la ense ̃nanza de la probabilidad desde el enfoquefrecuencial.Bolema,28(48), 209-229.
  • [21] Green, D. R. (1983a). From thumbtacks to inference.School Science andMathematics,83(7), 541-551.
  • [22] Green, D. R. (1983b). A Survey of probabilistic concepts in 3000 pupilsaged 11-16 years. En D. R. Grey et al. (Eds.),Proceedings of theFirst International Conference on Teaching Statistics(Vol.2, pp. 766-783).Universidad de Sheffield: Teaching Statistics Trust.
  • [23] Green, D. R. (1991). A longitudinal study of children’s probability concepts.En D. Vere Jones (Ed.),Proceedings of the Third International Conferenceon Teaching Statistics(pp. 320 - 328). Dunedin: University of Otago.
  • [24] Harradine, A., Batanero, C. y Rossman, A. (2011). Students and teachers’knowledge of sampling and inference. En C. Batanero, G. Burrill y CReading (Eds.),Teaching statistics in school mathematics. Challenges forteaching and teacher education(pp. 235-246). Dordrecht, The Netherlands:Springer.
  • [25] Heitele, D. (1975). An epistemological view on fundamental stochasticideas.Educational Studies in Mathematics,6, 187-205.
  • [26] Kadijevich, D., Kokol-Voljc, V. y Lavicza, Z. (2008). Towards a suitabledesigned instruction on statistical reasoning: Understanding samplingdistribution with technology. En C. Batanero, G. Burrill, C. Readingy A.Rossman (Eds.),Proceedings of the ICMI Study 18 Conference and IASE2008 Round Table Conference.Monterrey: International Statistical Institute.
  • [27] Kahneman, D., Slovic, P. y Tversky, A. (1982).Judgment underuncertainty: Heuristics and biases.New York: Cambridge University Press.
  • [28] Ko, E.S. (2016). Development of an understanding of a samplingdistribution. En D. Ben-Zvi y K. Makar (Eds.),The Teaching and Learningof Statistics(pp. 63-70). New York; Springer.
  • [29] Konold, C. (1989). Informal conceptions of probability.Cognition andInstruction,6, 59-98.
  • [30] Langer, E. J. (1982). The illusion of control. En D. Kahneman, P. Slovic yA. Tversky (Eds.),Judgment under uncertainty: Heuristic and biases(pp.231-238). New York: Cambridge University Press.
  • [31] Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purelyrando” situations.Educational Studies in Mathematics,23, 557-568.
  • [32] Liu, Y. y Thompson, P. W. (2009). Mathematics teachers’ understandingsof proto-hypothesis testing.Pedagogies,4(2), 126-138.
  • [33] Makar, K., y Rubin, A. (2009). A framework for thinking about informalstatistical inference.Statistics Education Research Journal,8(1), 82-105.
  • [34] MECD, Ministerio de Educaci ́on, Cultura y Deporte (2015).Real Decreto1105/2014, de 26 de diciembre, por el que se establece el curr ́ıculo b ́asico dela Educaci ́on Secundaria Obligatoria y del Bachillerato.
  • [35] Meletiou-Mavrotheris, M., y Paparistodemou, E. (2015). Developingstudents’ reasoning about samples and sampling in the context of informalinferences.Educational Studies in Mathematics,88(3), 385-404.
  • [36] Moses, L. E. (1992). The reasoning of statistical inference. En D. C. Hoagliny D. S. Moore (Eds.),Perspectives on contemporary statistics(pp. 107-121).Washington: Mathematical Association of America