Insights into the structural evolution of the pre-Variscan rocks of the Eastern Pyrenees from La Molina quartz veins; constraints on chlorite and fluid inclusion thermometry

  1. González-Esvertit, Eloy
  2. Canals, Àngels
  3. Casas, Josep Maria
  4. Nieto, Fernando
Revista:
Geologica acta: an international earth science journal

ISSN: 1695-6133

Año de publicación: 2020

Volumen: 18

Número: 1

Tipo: Artículo

DOI: 10.1344/GEOLOGICAACTA2020.18.18 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Geologica acta: an international earth science journal

Resumen

Quartz veins hosted in the infra and overlying series to the (Sardic) Upper Ordovician Unconformity provide new insights into the structural and thermal evolution of the pre-Variscan rocks of the Eastern Pyrenees. In the La Molina area (Canigó massif), two generations of metric quartz veins (V1 and V2) are distinguished by their distribution patterns and their relationships to the deformational macro, meso, and microstructures. P-T formation conditions are obtained by combining chlorite geothermometry and fluid inclusion microthermometry data. Discrepancy on formation temperature for chlorites located at different positions within the veins are discussed, concluding that veins grew in a low fluid/rock ratio regime. V1 veins can be related to the Late Ordovician syn-sedimentary faulting episode as revealed by their distribution patterns, formation mechanisms, and fluid-rock interactions. We propose an Alpine age for the V2 veins, based on their structure and the emplacement conditions of 318 ± 12°C and 2.4 ± 0.2kbar, with an estimated geothermal gradient of 34°C∙km-1 and a burial depth of ca. 9km. Results obtained here are compared with other quartz veins spread throughout the Paleozoic basement of the Eastern Pyrenees.

Información de financiación

The authors are grateful to Petroleum Experts for the use of MOVE? and to Carlos H. Grohmann for the use of Open Stereo software packages. Useful and detailed revisions made by Guillermo Booth-Rea and Gabriel Guti?rrez-Alonso, and technical editing have improved a first version of the manuscript. This paper is a contribution to 2017SGR-1733 Research Group and to projects CGL2017-87631-P and PGC2018-093903-B-C22 from the Ministerio de Ciencia, Innovaci?n y Universidades/ Agencia Estatal de Investigaci?n/Fondo Europeo de Desarrollo Regional, Uni?n Europea.

Referencias bibliográficas

  • Álvaro, J.J., Casas J.M., Clausen, S., Quesada C., 2018. Early Palaeozoic geodynamics in NW Gondwana. Journal of Iberian Geology, 44, 551-565. DOI: https://doi.org/10.1007/s41513-018-0079-x
  • Aydin, A., Borja, R.I., Eichhubl, P., 2006. Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology, 28, 83-98. DOI: https://doi.org/10.1016/j.jsg.2005.07.008
  • Ayora, C., Casas, J.M., 1983. Estudi microtermomètric dels filons de quars de les Esquerdes de Rojà, Massís del Canigó. Acta
  • Geológica Hispánica, 18(1), 35-46.
  • Ayora, C., Carreras, J., Casas, J.M., Liesa, M., 1984. Informe quarsos. Internal report. Barcelona, Universitat de Barcelona, unpublished.
  • Ayora, C., Casas, J.M., 1986. Strabound As-Au mineralization in pre-Caradocian rocks form the Vall de Ribes, Eastern Pyrenees, Spain. Mineralium Deposita, 21, 278-287.
  • Bakker, J.R., 2003. Package FLUIDS 1, Computer programs for Fluid Inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 3-23. DOI: https://doi.org/10.1016/S0009-2541(02)00268-1.
  • Belaustegui, Z., Puddu, C., Casas, J.M., 2016. New ichnological data from the lower Paleozoic pf the Central Pyrenees: presence of Artrophycus Brogniartii (Harlam, 1832) in the Upper Ordovician Cava Formation. Geo-Temas, 16, 271-274.
  • Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683-684. DOI: https://doi.org/10.1016/0016-7037(93)90378-A.
  • Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo, B., Frezzoti, M.L. (eds.). Fluid Inclusions in minerals: Methods and Applications. Blacksburg, Virginia Tech, 117-130.
  • Bons, A.J., 1988. Intracrystalline deformation and slaty cleavage development in very low-grade slates from the Central Pyrenees. Geologica Ultraiectina, 56, 173pp.
  • Bons, P.D., 2000. The formation of veins and their microstructures. In: Jessell, M.W., Urai, J.L. (eds.). Stress, Strain and Structure, A Volume in Honour of W D Means. Journal of the Virtual Explorer. Last accessed: November 10th, 2020. Website:
  • https://www.tectonique.net/MeansCD/wdmrom_pdf/bons.pdf. DOI: https://doi.org/10.3809/jvirtex.2000.00007
  • Bons, P.D., 2001. Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. Journal of Structural Geology 23, 865-872. DOI: https://doi.org/10.1016/j.jsg.2012.07.005
  • Bons, P.D., Elburg, M.A., Gomez-Rivas, E., 2012. A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33-62.
  • Bourdelle, F., Parra, T., Chopin, C., Beyssac, O., 2013. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contributions to Mineralogy and Petrology, 165, 723-735. DOI: https://doi.org/10.1007/s00410-012-0832-7
  • Bourdelle, F., Cathalineau, M., 2015. Low-temperature chlorite geothermometry: a graphical representation based on a T-R2+-Si diagram. European Journal of Mineralogy, 27, 617-626. DOI: https://doi.org/10.1127/ejm/2015/0027-2467
  • Carreras, J., Capellà, I., 1994. Tectonic levels in the Paleozoic basement of the Pyrenees: a review and a new interpretation.
  • Journal of Structural Geology, 16, 1509-1524. DOI: https://doi.org/10.1016/0191-81 41(94)90029-9
  • Carrillo, E., Rosell, L., Ortí, F., 2014. Multiepisodic evaporite sedimentation as an indicator of palaeogeographical evolution
  • in foreland basins (South-eastern Pyrenean basin, Early–Middle Eocene). Sedimentology, 61, 2086-2112. DOI: https://doi.org/10.1111/sed.12140
  • Casas, J.M., Fernández, O., 2007. On the Upper Ordovician unconformity in the Pyrenees: New evidence from the La Cerdanya area. Geologica Acta, 5(2), 193-198. DOI: https://doi.org/10.1344/105.000000304
  • Casas, J.M., 2010. Ordovician deformations in the Pyrenees: new insights into the significance of pre-Variscan (‘sardic’) tectonics. Geological Magazine, 147, 674-689. DOI: https://doi.org/10.1017/S0016756809990756
  • Casas, J.M., Palacios, T., 2012. First biostratigraphical constraints on the pre-Upper Ordovician sequences of the Pyrenees based on organic-walled microfossils. Comptes Rendus Geosciences, 344(1), 50-56. DOI: https://doi.org/10.1016/j.crte.2011.12.003
  • Casas, J.M., Queralt, P., Menco J., Gratacós, O., 2012. Distribution of linear mesostructures in oblique folded surfaces: Unravelling superposed Ordovician and Variscan folds in the Pyrenees. Journal of Structural Geology, 44, 141-150. DOI: https://doi.org/10.1016/j.jsg.2012.08.013
  • Casas, J.M., Álvaro, J.J., Clausen, S., Padel, M., Puddu, C., SanzLópez, J., Sánchez-García, T., Navidad, M., Castiñeiras, P., Liesa, M., 2019. Palaeozoic basement of the Pyrenees. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: a Geodynamic Approach. Regional Geology Reviews series. Heidelberg, Springer, volume 2, chapter 8, 229-259.
  • Cavet, P., 1957. Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. Bulletin Service Carte Géologique France, 55, 303-518.
  • Clariana, P., García-Sansegundo, J., 2009. Variscan structure in the eastern part of the Pallaresa massif, Axial Zone of the
  • Pyrenees (NW Andorra). Tectonic implications. Bulletin de la Société géologique de France, 180, 501-511. DOI: https://doi.
  • org/10.2113/gssgfbull.180.6.501
  • Cocco, F., Funedda, A., 2019. The Sardic phase: field evidence of Ordovician tectonics in SE Sardinia, Italy. Geological Magazine, 156, 25-38. DOI: https://doi.org/10.1017/s001675681 70007 23
  • Cochelin, B., Lemirre B., Denèle, Y., de Saint Blanquat, M., Lahfid, A., Duchêne, S., 2018. Structural inheritance in the Central Pyrenees: the Variscan to Alpine tectonometamorphic evolution of the Axial Zone. Journal of the Geological Society, 175, 336-351. DOI: https://doi.org/10.1144/jgs2017-066
  • Den Brok, S.W.J., 1989. Evidence for pre-Variscan deformation in the Lys Caillaouas area, Central Pyrenees, France. Geologie en Mijnbouw, 68, 377-380.
  • Domingo, F., Muñoz, J.A., Santanach, P., 1988. Estructures d’encavalcament en les materials del sòcol hercinia del massís de la Tossa d’Alp, Pirineu oriental. Acta Geologica Hispanica, 23, 141-53.
  • Durney, D.W., Ramsay, J.G., 1973. Incremental strains measured by syntectonic crystal growths. In: De Jong, K.A., Scholten, R.. (eds.). Gravity and Tectonics, John Wiley, 67-96.
  • Essene, E.J., Peacor, D.R., 1995. Clay mineral thermometry—a critical perspective. Clays and clay minerals, 43, 540-553. DOI: https://doi.org/10.1346/CCMN.1995.0430504.
  • Fonseca, H.A.M., Canals, A., Cirés, J., Casas, J.M., 2015. The Roses Giant Quartz Vein (Cap de Creus, Eastern Pyrenees): Geology and Fluid Inclusion Data. MACLA, Revista de la Sociedad Española de Mineralogía, 20, 49-50.
  • Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K., 2007. Deformation bands in sandstone: a review. Journal of the Geological Society, 164, 755-769. DOI: https://doi.org/10.1144/0016-76492006-036.
  • Franceschelli, M., Mellini, M., Memmi, I., Ricci, C.A., 1986. Finescale chlorite-muscovite association in low-grade metapelites
  • from Nurra (NW Sardinia) and the possible misidentification of metamorphic vermiculite. Contributions to Mineralogy and Petrology., 93, 137-143. DOI: https://doi.org/10.1007/BF00371315
  • García-Sansegundo, J., Alonso, J.L., 1989. Stratigraphy and structure of the southeastern Garona Dome. Geodinamica Acta, 3, 127-134. DOI: https://doi.org/10.1080/09853111.1989.11105180
  • García-Sansegundo, J., Gavaldà, J., Alonso, J.L., 2004. Preuves de la discordance de l’Ordovicien supérieur dans la zone axiale des Pyrénées: exemple de dôme de la Garonne (Espagne, France). Comptes Rendus Géoscience, 336, 1035-1040. DOI: https://doi.org/10.1016/j.crte.2004.03.009
  • García-Sansegundo, J., Poblet, J., Alonso, J.L., Clariana, P., 2011. Hinterland-foreland zonation of the Variscan orogen in the
  • Central Pyrenees: Comparison with the northern part of the Iberian Variscan Massif. Geological Society London, 349 (Special Publications), 169-184. DOI: https://doi.org/10.1144/SP349.9
  • Gil-Peña, I., Barnolas, A., Villas, E., Sanz-López, J., 2004. El Ordovícico Superior de la Zona Axial. In: Vera J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España and Instituto Geológico y Minero de España (SGE-IGME), 247-24.
  • Guitard, G., 1970. Le métamorphisme hercynien mésozonal et les gneiss œillés du massif du Canigou (Pyrénées orientales). Mémoires du Bureau de Recherches Géologiques et Minières (BRGM), 63, 353pp.
  • Hartevelt, J.J.A., 1970. Geology of the upper Segre and Valira valleys, central Pyrenees, Andorra/Spain. Leidse Geologische Mededelingen, 45, 167-236.
  • Henderson, I.H.C., McCaig, A.M., 1996. Fluid pressure and salinity variations in shear zone-related veins, central Pyrenees, France: Implications for the fault-valve model. Tectonophysics, 262, 321-348. DOI: https://doi.org/10.1016/0040-1951(96)00018-2
  • Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine, 224, 277-292.
  • Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., Vieillard, P., 2009. Application of chemical geothermometry
  • to low-temperature trioctahedral chlorites. Clays and Clay Minerals, 57, 371-382.
  • Inoue, A., Inoué, S., Utada, M., 2018. Application of chlorite thermometry to estimation of formation temperature and redox conditions. Clay Minerals, 53, 143-148. DOI: https://doi.org/10.1180/clm.2018.10.
  • Izquierdo-Llavall, E., Aldega, L., Cantarelli, V., Corrado, S., GilPeña, I., Invernizzi, C., Casas, A.M., 2013. On the origin of cleavage in the Central Pyrenees: Structural and paleothermal study. Tectonophysics, 608, 303-318. DOI: https://doi.org/10.1016/j.tecto.2013.09.027
  • Knight, C.L., Bodnar, R.J., 1989. Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions. Geochimica et Cosmochimica Acta, 53, 3-8. DOI: https://doi.org/10.1016/0016-7037(89)90267-6
  • Kister, P., Laumonier, B., Marignac, C., Boiron, M.C., 2003. Retrograde P-T-t-D path in a segment of a West-European Variscan belt: evidence for an anticlockwise path in the Canigou Massif (eastern Pyrenees) from fluid inclusion data. – EUG XII, Nice: 6-11 avril 2003, Geophysical Research Abstracts, 5, EAE03-A-11263.
  • Kriegsman, L.M., Aerden, D.G.A.M., Bakker, R.J., Den Brok, S.W.J., Schutjens, P.M.T.M., 1989. Variscan tectonometamorphic
  • evolution of the eastern Lys-Caillaouas massif, Central Pyrenees-evidence for late orogenic extension prior to peak metamorphism. Geologie en Mijnbouw, 68, 323-333.
  • Lacroix, B., Buatier, M., Labaume, P., Travé, A., Dubois, M., Charpentier, D., Ventalon, S., Convert-Gaubier, D., 2011. Microtectonic and geochemical characterization of thrusting in a foreland basin: example of the South-Pyrenean orogenic
  • wedge (Spain). Journal of Structural Geology, 33, 1359-1377. DOI: https://doi.org/10.1016/j.jsg.2011.06.006
  • Lacroix, B., Charpentier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Travé, A., Dubois, M., 2012. Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T conditions in the Monte Perdido thrust fault (southern Pyrenees). Contributions to Mineralogy and Petrology, 163, 1083-1102. DOI: https://doi.org/10.1007/s00410-011-0718-0
  • Lanari, P., Wagner, T., Vidal, O., 2014. A thermodynamic model for di-trioctaedrical chlorite from experimental and natural
  • data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry. Contributions to Mineralogy and Petrology, 167. 1-19. DOI: https://doi.org/10.1007/s00410-014-0968-8
  • Laumonier, B., 1988. Les groupes de Canaveilles et de Jujols (‘‘Paléozoïque inférieur’’) des Pyrénées orientales – arguments en faveur de l’âge essentiellement Cambrien de ces séries. Hercynica, 4, 25-38.
  • Lemarchand, J., Boulvais, P., Gaboriau, M., Boiron, M.-C., Tartèse, R., Cokkinos, M., Bonnet, S., Jégouzo, P., 2012. Giant quartz vein formation and high-elevation meteoric fluid infiltration into the South Armorican Shear Zone: geological, fluid inclusion and sta- ble isotope evidence. Journal of the Geological Society, 169, 17-27. DOI: https://doi.org/10.1144/0016- 76492010-186
  • Liesa, M., 1988. El metamorfisme del vessant sud del Massís del Roc de Frausa (Pirineus Orientals). Doctoral Thesis. Barcelona, Universitat de Barcelona, unpublished, 233pp.
  • Margalef, A., Casas, J.M., 2016. Corte geológico compensado del sur de Andorra: aportaciones a la estructura varisca del
  • Pirineo central. Geo-Temas, 16, 61-63.
  • Margalef, A., Castiñeiras, P., Casas, J.M., Navidad, M., Liesa, M., Linnemann, U., Hofmann, M., Gärtner, A., 2016. Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance. Tectonophysics, 681, 124-134. DOI: https://doi.org/10.1016/j.tecto.2016.03.015
  • Martín-Closas, C., Trias, S., Casas, J.M., 2018. New palaeobotanical data from Carboniferous Culm deposits constrain the age of the Variscan deformation in the Eastern Pyrenees. Geologica Acta, 16(2), 107-123. DOI: https://doi.org/10.1344/
  • GeologicaActa2018.16.2.1
  • Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., De Andrade, V., Herviou, C., 2019. A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry. American Mineralogist, 104, 403-417. DOI: https://doi.org/10.2138/am-2019-6766
  • Mellini, M., Nieto, F., Alvarez, F., Gomez-Pugnaire, M.T., 1991. Mica-chlorite intermixing and altered chlorite from the Nevado-Filabride micaschists, Southern Spain. European Journal of Mineralogy, 3, 27-38. DOI: https://doi.org/10.1127/
  • ejm/3/1/0027
  • Mey, P.H.W., 1967. The geology of the Upper Ribagorzana and Baliera valleys, Central Pyrenees, Spain. Leidse Geologische
  • Mededelingen, 41, 153-220.
  • Muñoz, J.A., 1992a. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: Mc Clay, K.R. (ed.). Thrust Trectonics. London, Chapman & Hall, 235-246.
  • Muñoz, J.A. 1992b. Estructura alpina i herciniana a la vora sud de la Zona Axial del Pirineu oriental. Monografies núm. 1. Publicació del Servei Geològic de Catalunya, Barcelona: Generalitat de Catalunya, Departament de Política Territorial i Obres Públiques, Servei Geologic de Catalunya, 227pp.
  • Munoz, M., Vidal, O., Marcaillou, C., Pascarelli, S., Mathon, O., Farges, F., 2013. Iron oxidation state in phyllosilicate single crystals using Fe-K pre-edge and XANES spectroscopy: Effects of the linear polarization of the synchrotron X ray beam. American Mineralogist, 98, 1187-1197. DOI: https://doi.org/10.2138/am.2013.4289
  • Nakamura, M., Watson, E.B., 2001. Experimental study of aqueous fluid infiltration into quartzite: implications for the kinetics of fluid redistribution and grain growth driven by interfacial energy reduction. Geofluids, 1, 73-89. DOI: https://
  • doi.org/10.1046/j.1468-8123.2001.00007.x
  • Navidad, M., Castiñeiras, P., Casas, J.M., Liesa, M., Belousova, E., Proenza, J., Aiglsperger, T., 2018. Ordovician magmatism in the Eastern Pyrenees: Implications for the geodynamic evolution of northern Gondwana. Lithos, 314, 479-496. DOI: https://doi.org/10.1016/j.lithos.2018.06.019
  • Niemeijer, A.R., Spires, C.J., 2002. Compaction creep of quartzmuscovite mixtures at 500°C: Preliminary results on the influence of muscovite on pressure solution. London, Geological Society, 200 (Special Publications), 61-71. DOI: https://doi.org/10.1144/GSL.SP.2001.200.01.04
  • Padel, M., Álvaro, J.J., Casas, J.M., Clausen, S., Poujol, M., Sánchez-García, T., 2018a. Cadomian volcanosedimentary complexes across the Ediacaran−Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences, 107, 1579-1601. DOI: https://doi.org/10.1007/s00531-017-1559-5
  • Padel, M., Clausen, S., Álvaro, J.J., Casas, J.M. 2018b. Review of the Ediacaran–Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta, 16, 339-355. DOI: https://doi.org/10.1344/
  • GeologicaActa2018.16.4.1
  • Parry, W.T., Chan, M.A., Beitler, B., 2004. Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone. American Association of Petroleum Geologists (AAPG) Bulletin, 88, 175-191.
  • Pasci, S., Pertusati, P.C., Salvadori, I., Murtas, A., 2008. I rilevamenti CARG del Foglio geologico 555 “Iglesias” e le nuove implicazioni strutturali sulla tettonica della “Fase Sarda”. Rendiconti online della Società Geologica Italiana, Abstracts, 3, 614-615.
  • Pereira, M.F., Castro, A., Chichorro, M., Fernández, C., DíazAlvarado, J., Martí, J., Rodríguez, C., 2014. Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research, 25, 290-308. DOI: https://doi.org/10.1016/j.gr.2013.03.009
  • Pillola, G.L., Piras, S., Serpagli, E., 2008. Upper Tremadoc–Lower Arenig? Anisograptid-Dichograptid fauna from the Cabitza Formation (Lower Ordovician, SW Sardinia, Italy). Revue de Micropaléontologie, 51, 167-181. DOI: https://doi.org/10.1016/j.revmic.2007.08.002
  • Poblet, J., 1991. Estructura herciniana i alpina del vessant sud de la zona axial del Pirineu central. PhD thesis. Barcelona, Universitat de Barcelona, unpublished, 604pp.
  • Puddu, C., Carrera, N., Casas, J.M., 2019. Deciphering the Sardic (Ordovician) and Variscan deformations in the Eastern Pyrenees, SW Europe. Journal of the Geological Society, 176, 1191-1206. DOI: https://doi.org/10.1144/jgs2019-057
  • Ramsay, J.G., 1967. Folding and fracturing of rocks. New York, Mac Graw-Hill, 568pp.
  • Ramsay, J.G., 1980. The crack seal mechanism of rock deformation. Nature, 284, 135-139. DOI: https://doi.org/10.1038/284135a0
  • Renard, F., Ortoleva, P., Gratier, J.P., 1997. Pressure solution in sandstones: influence of clays and dependence on temperature and stress. Tectonophysics, 280, 257-266. DOI: https://doi.org/10.1016/S0040-1951(97)00039-5
  • Santanach, P.F., 1972a. Sobre una discordancia en el Paleozoico inferior de los Pirineos orientales. Acta Geológica Hispánica, 7, 129-132.
  • Santanach, P.F., 1972b. Estudio tectónico del Paleozoico inferior del Pirineo entre la Cerdaña y el río Ter. Acta Geológica Hispánica, 7, 44-49.
  • Sánz-López, J. 2019. Synorogenic Eastern Iberian Peninsula Basins Related to the Paleotethys Margin. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: a Geodynamic Approach. Heidelberg, Springer, Regional Geology Reviews series, volume 2, chapter 11.4, 408-429.
  • Sharp, Z.D., Masson, H., Lucchini, R., 2005. Stable isotope geochemistry and formation mechanisms of quartz veins; extreme paleoaltitudes of the central alps in the Neogene. American Journal of Science, 305, 187-219. DOI: https://doi.org/10.2475/ajs.305.3.187
  • Sibson, R., 1981. A brief description of natural neighbour interpolation. In: Barnett, V. (ed.). Interpolating Multivariate Data. Chichester, John Wiley, chapter 2, 21-36. DOI: https://doi.org/10.1007/3-540-26772-7_8
  • Speksnijder, A., 1986. Geological analysis of Paleozoic large-scale faulting in the south-central Pyrenees. Geologica Ultraiectina, 43, 1-211.
  • Teichmüller, R., 1931. Zur Geologie des Yhyrrenisbebietes, Teil1: Alte und junge Krustenbewegungen im südlinchen Dardinien. Abhandlungen der Gesellschaft (Akademie) der Wissenschaften, Gottingen, 3, 857-950.
  • Trincal, V., Lanari, P., 2016. Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member. Clay Minerals, 51, 675-689. DOI: https://doi.org/10.1180/claymin.2016.051.4.09
  • Turner, F.J., Weiss, L.E. 1963. Structural analysis of metamorphic tectonites. New Cork, Mac Graw-Hill, 545pp.
  • Van Noten, K., Sintubin, M., 2010. Linear to non-linear relationship between vein spacing and layer thickness in centimetre- to decimetre-scale siliciclastic multilayers from the High-Ardenne slate belt (Belgium, Germany). Journal of Structural Geology, 32, 377-391. DOI: https://doi.org/10.1016/j.jsg.2010.01.011
  • Verdecchia, S.O., Collo, G., Zandomeni, P.S., Wunderlin, C., Fehrmann, M., 2019. Crystallochemical indexes and geothermobarometric calculations as a multiproxy approach to P-T condition of the low-grade metamorphism: The case of the San Luis Formation, Eastern Sierras Pampeanas of Argentina. Lithos, 323-324, 385-401. DOI: https://doi.org/10.1016/j.lithos.2018.11.021
  • Vidal, O., De Andrade, V., Lewin, E., Muñoz, M., Parra, T., Pascarelli, S., 2006. P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). Journal of Metamorphic Geology, 24, 669-683. DOI: https://doi.org/10.1111/j.1525-1314.2006.00661.x
  • Vidal, O., Lanari, P., Munoz, M., Bourdelle, F., de Andrade, V., 2016. Deciphering temperature, pressure and oxygen activity
  • conditions of chlorite formation. Clay Minerals, 51, 615-633. DOI: https://doi.org/10.1180/claymin.2016.051.4.06
  • Wangen, M., Munoz, I.A., 2004. Formation of quartz veins by local dissolution and transport of silica. Chemical Geology, 209, 179-192. DOI: https://doi.org/10.1016/j.chemgeo.2004.02.011
  • Yardley, B.W.D., 1975. On some quartz-plagioclase veins in the Connemara schists, Ireland. Geological Magazine, 112, 183-
  • DOI: https://doi.org/10.1017/S0016756800045866
  • Zwart, H.J., 1979. The geology of the central Pyrenees. Leidse Geologische Mededelingen, 50, 1-74.