A case–control studyEvaluating the role of leukotriene receptor antagonists in preventing the cardiovascular and cerebrovascular disease

  1. Hoxha, M. 1
  2. V. Malaj 2
  3. M. Vara-Messler 3
  4. C.R. Doce 4
  5. A.B. Cavanillas 4
  1. 1 University of Milan
    info

    University of Milan

    Milán, Italia

    ROR https://ror.org/00wjc7c48

  2. 2 University of Tirana
    info

    University of Tirana

    Tirana, Albania

    ROR https://ror.org/03g9v2404

  3. 3 University of Turin
    info

    University of Turin

    Turín, Italia

    ROR https://ror.org/048tbm396

  4. 4 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revue:
Semergen: revista española de medicina de familia

ISSN: 1138-3593

Année de publication: 2021

Número: 1

Pages: 4-11

Type: Article

DOI: 10.1016/J.SEMERG.2020.09.008 DIALNET GOOGLE SCHOLAR

D'autres publications dans: Semergen: revista española de medicina de familia

Résumé

Introduction Leukotriene receptor antagonists (LTRAs) are used as a therapeutic alternative in asthmatic patients. Different animal studies indicate that LTRAs can decrease intimal hyperplasia after vascular injury, and have a protective role in cerebral ischemia. Objective The aim of this study was to assess the role of leukotriene receptor antagonists in preventing the cardiovascular and ischemic stroke in humans. Material and method A matched case–control study with a follow up period of three years has been conducted, investigating the effect of the LTRAs in the myocardial infarct (MI) risk, and in the ischemic stroke (IS) risk in asthmatic patients from San Cecilio University Hospital of Granada, and from two Primary Health Care Centers of Granada. Results 59 cases with MI and 108 cases with IS were included in the study, each of them with an equal number of controls matched by age and sex in each of the two Health Care Centers. Unlike for MI risk, the treatment with LTRAs was associated with a slight trend in reducing the risk of stroke, in both of the primary care controls (Odds ratios: 0.74 (0.37–1.47); 0.82 (0.4–1.67), for the first, and the second Health Centers Controls, respectively), but without reaching a statistical significance. Conclusions The results did not confirm a protective effect of LTRAs on cardiovascular risk as suggested by different animal studies.

Références bibliographiques

  • V. Capra, M.D. Thompson, A. Sala, D.E. Cole, G. Folco, G.E. Rovati Cysteinyl leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends Med Res Rev, 27 (2007), pp. 469-527, 10.1002/med.20071 CrossRefView Record in ScopusGoogle Scholar
  • C. Brink, S.E. Dahlén, J. Drazen, J.F. Evans, D.W. Hay, S. Nicosia, et al. International union of pharmacology XXXVII: nomenclature for leukotriene and lipoxin receptors Pharmacol Rev, 55 (2003), pp. 195-227, 10.1124/pr.55.1.8 View Record in ScopusGoogle Scholar
  • D. Poeckel, C.D. Funk The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease Cardiovasc Res, 86 (2010), pp. 243-253, 10.1093/cvr/cvq016 CrossRefView Record in ScopusGoogle Scholar
  • J. Chu, D. Praticò The 5-lipoxygenase as a common pathway for pathological brain and vascular aging Cardiovasc Psychiatry Neurol, 2009 (2009), pp. 174-657, 10.1155/2009/174657 CrossRefGoogle Scholar
  • E. Ingelsson, L. Yin, M. Bäck Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease J Allergy Clin Immunol, 129 (2012), pp. 702-707, 10.1016/j.jaci.2011.11.052 View Record in ScopusGoogle Scholar
  • H.D. Yun, E. Knoebel, Y. Fenta, S.E. Gabriel, C.L. Leibson, E.V. Loftus, et al. Asthma and proinflammatory conditions: a population-based retrospective matched cohort study Mayo Clin Proc, 87.10 (2016), pp. 953-960, 10.1016/j.mayocp.2012.05.020 Google Scholar
  • M. Hoxha, G.E. Rovati, A.B. Cavanillas The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field Eur J Clin Pharmacol, 73 (2017), pp. 799-809, 10.1007/s00228-017-2242-2 CrossRefView Record in ScopusGoogle Scholar
  • Y. Toki, N. Hieda, T. Torii, H. Hashimoto, T. Ito, K. Ogawa, et al. The effects of lipoxygenase inhibitor and peptidoleukotriene antagonist on myocardial injury in a canine coronary occlusion-reperfusion model Prostaglandins, 35 (1988), pp. 555-571, 10.1016/0090-6980(88)90031-7 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • C.E. Hock, L.D. Beck, L.A. Papa Peptide leukotriene receptor antagonism in myocardial ischemia and reperfusion Cardiovasc Resp, 26 (1992), pp. 1206-1211, 10.1093/cvr/26.12.1206 CrossRefView Record in ScopusGoogle Scholar
  • T. Ito, Y. Toki, N. Hieda, K. Okumura, H. Hashimoto, K. Ogawa, et al. Protective effects of a thromboxane synthetase inhibitor a thromboxane antagonist a lypoxigenase inhibitor a leukotriene C4 D4 antagonist on myocardial injury caused by acute myocardial infarction in the canine heart Jpn Circ J, 53 (1989), pp. 1115-1121, 10.1253/jcj.53.1115 CrossRefView Record in ScopusGoogle Scholar
  • R.A. Hahn, B.R. MacDonald, E. Morgan, B.D. Potts, C.J. Parli, L.E. Rinkema, et al. Evaluation of LY203647 on cardiovascular leukotriene D4 receptors and myocardial reperfusion injury J Pharmacol Exp Ther, 260 (1992), pp. 979-989 1312172 View Record in ScopusGoogle Scholar
  • S. Allen, M. Dashwood, K. Morrison, M. Yacoub Differential leukotriene constrictor responses in human atherosclerotic coronary arteries Circulation, 97 (1988), pp. 2406-2413, 10.1161/01.CIR.97.24.2406 Google Scholar
  • R. Spanbroek, R. Gräbner, K. Lötzer, M. Hildner, A. Urbach, K. Rühling, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial Wall during human atherogenesis Proc Narl Acad Sci USA, 100 (2003), pp. 1238-1243, 10.1073/pnas.242716099 View Record in ScopusGoogle Scholar
  • G. Folco, G. Rossoni, C. Buccellati, F. Berti, J. Maclouf, A. Sala Leukotrienes in cardiovascular diseases Am J Respir Crit Care Med (2000), pp. S112-S116, 10.1164/ajrccm.161.supplement_1.ltta-22 CrossRefView Record in ScopusGoogle Scholar
  • Y. Kaetsu, Y. Yamamoto, S. Sugihara, T. Matsuura, G. Igawa, K. Matsubara, et al. Role of cysteinyl leukotrienes in the proliferation and the migration of murine vascular smooth muscle cells in vivo and in vitro Cardiovasc Res, 76 (2007), pp. 160-166, 10.1016/j.cardiores.2007.05.018 CrossRefView Record in ScopusGoogle Scholar
  • S. Ge, G. Zhou, S. Cheng, D. Liu, J. Xu, G. Xu, et al. Anti-atherogenic effects of montelukast associated with reduced MCP-1 expression in a rabbit carotid balloon injury model Atherosclerosis (2009), pp. 74-79, 10.1016/j.atherosclerosis.2008.11.012 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • V. Capra, C. Carnini, M.R. Accomazzo, A. Di Gennaro, M. Fiumicelli, E. Borroni, et al. Autocrine activity of cisteinyl leukotrienes in human vascular endothelial cells: signalling through the CysLT2 receptor Prostaglandins Other Lipid Mediat, 120 (2015), pp. 115-125, 10.1016/j.prostaglandins.2015.03.007 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • H. Bisgaard Leukotriene modifiers in paediatric asthma management Pediatrics, 107 (2001), pp. 381-390, 10.1542/peds.107.2.381 View Record in ScopusGoogle Scholar
  • M. Bäck, S.E. Dahlén, J.M. Drazen, J.F. Evans, C.N. Serhan, T. Shimizu, et al. International union of basic and clinical pharmacology. LXXXIV: Leukotriene receptor nomenclature, distribution, and pathophysiological functions Pharmacol Rev, 63 (2011), pp. 539-584, 10.1124/pr.110.004184 CrossRefView Record in ScopusGoogle Scholar
  • V. Capra, M. Bäck, S.S. Barbieri, M. Camera, E. Tremoli, G.E. Rovati Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke Med Res Rev, 33 (2013), pp. 364-438, 10.1002/med.21251 CrossRefView Record in ScopusGoogle Scholar
  • C.F. Mueller, K. Wassmann, J.D. Widder, S. Wassmann, C.H. Chen, B. Keuler, et al. Multidrug resistance protein-1 affects oxidative stress endothelial dysfunction and atherogenesis via leukotriene C4 export Circulation, 117 (2008), pp. 2912-2918, 10.1161/circulationha.107.747667 View Record in ScopusGoogle Scholar
  • N. Bıber, H.Z. Toklu, S. Solakoglu, M. Gultomruk, T. Hakan, Z. Berkman, et al. Cysteinyl-leukotriene receptor antagonist montelukast decreases blood–brain barrier permeability but does not prevent oedema formation in traumatic brain injury Brain Injury, 23 (2009), pp. 577-584, 10.1080/02699050902926317 CrossRefView Record in ScopusGoogle Scholar
  • G.L. Yu, E.Q. Wei, M.L. Wang, W.P. Zhang, S.H. Zhang, J.Q. Weng, et al. Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice Brain Res, 1053 (2005), pp. 116-125, 10.1016/j.brainres.2005.06.046 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • G.L. Yu, E.Q. Wei, S.H. Zhang, H.M. Xu, L.S. Chu, W.P. Zhang, et al. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose-and time-dependently protects against focal cerebral ischemia in mice Pharmacology, 73 (2005), pp. 31-40, 10.1159/000081072 CrossRefView Record in ScopusGoogle Scholar
  • X.D. Qian, E.Q. Wei, L. Zhang, W.W. Sheng, M.L. Wang, W.P. Zhang, et al. Pranlukast, a cysteinyl leukotriene receptor 1 antagonist, protects mice against brain cold injury Eur J Pharmacol, 549 (2006), pp. 35-40, 10.1016/j.ejphar.2006.07.056 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • M. Bäck Inhibitor of the 5 lipoxygenase pathway in atherosclerosis Curr Pharm Des, 15 (2009), pp. 3116-3132, 10.2174/138161209789058020 CrossRefView Record in ScopusGoogle Scholar
  • G. Riccioni, V. Capra, N. D’Orazio, T. Bucciarelli, L.A. Bazzano Leukotriene modifiers in the treatment of cardiovascular diseases J Leukocyte Biol, 84 (2008), pp. 1374-1378, 10.1189/jlb.0808476 CrossRefView Record in ScopusGoogle Scholar