Efecto del incumplimiento de la hipótesis de normalidad en los gráficos de control de la media

  1. Pablo Moya Fernández 1
  2. Encarnación Álvarez-Verdejo 1
  3. Francisco Javier Blanco-Encomienda 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Journal:
Revista de métodos cuantitativos para la economía y la empresa

ISSN: 1886-516X

Year of publication: 2021

Volume: 31

Pages: 128-143

Type: Article

DOI: 10.46661/REVMETODOSCUANTECONEMPRESA.4307 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de métodos cuantitativos para la economía y la empresa

Abstract

Control charts are widely used to monitor the quality of industrial processes. It is quite common to assume that the random variable associated to the quality characteristic has a Normal distribution, and the control limits are defined so that the probability of obtaining a false alarm is 0.0027. However, the quality characteristic could follow a different distribution in practice, and this fact could have an impact on the efficiency of the control chart.In this paper, a Monte Carlo simulation study is carried out to evaluate empirically the impact of the lack of the normality assumption on the control chart for the mean. Different probabilistic distributions are considered. In addition, under control and out of control processes are considered.The results derived from the simulation study suggest that control charts are an effective tool when the distribution of the quality characteristic is slightly asymmetric. However, a large number of samples or larger sample sizes are required to obtain similar results to the case of symmetric distributions. In the case of asymmetric distributions, it is necessary to increase the sample sizes to obtain acceptable results. Finally, control charts are not recommended under evident cases of non-normality.

Funding information

Esta investigaci?n ha sido parcialmente apoyada por el Ministerio de Econom?a, Industria y Competitividad, la Agencia Estatal de Investigaci?n (ASI) y el Fondo Europeo de Desarrollo Regional (FEDER) (referencia del proyecto ECO2017-86822-R).

Bibliographic References

  • Abbas, N., Riaz, M., & Does, R.J. (2011). Enhancing the performance of EWMA charts. Quality and Reliability Engineering International, 27(6), 821-833.
  • Chan, L.K., Hapuarachchi, K.P., & Macpherson, B.D. (1988). Robustness of and R charts. IEEE Transactions on reliability, 37(1), 117-123.
  • Chen, G. (1997). The mean and standard deviation of the run length distribution of X charts when control limits are estimated. Statistica Sinica, 7(3), 789-798.
  • Jensen, W.A., Jones-Farmer, L.A., Champ, C.W., & Woodall, W.H. (2006). Effects of parameter estimation on control chart properties: A literature review. Journal of Quality Technology, 38(4), 349-364.
  • Jones, L.A., Champ, C.W., & Rigdon, S.E. (2001). The performance of exponentially weighted moving average charts with estimated parameters. Technometrics, 43(2), 156-167.
  • Li, Y., & Pu, X. (2012). On the performance of two‐sided control charts for short production runs. Quality and Reliability Engineering International, 28(2), 215-232.
  • Mahmoud, M.A., Saleh, N.A., & Madbuly, D.F. (2014). Phase I analysis of individual observations with missing data. Quality and Reliability Engineering International, 30(4), 559-569.
  • Mitra, A. (2016). Fundamentals of quality control and improvement. Hoboken, N.J.: Wiley.
  • Montgomery, D.C. (2009). Statistical quality control (6th ed.). New York: Wiley.
  • Muñoz, J.F., & Rueda, M. (2009). New imputation methods for missing data using quantiles. Journal of Computational and Applied Mathematics, 232(2), 305-317.
  • Rao, J.N.K., Kovar, J.G., & Mantel, H.J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika, 77(2), 365-375.
  • Saleh, N.A., Mahmoud, M.A., Keefe, M.J., & Woodall, W.H. (2015). The difficulty in designing Shewhart X and X control charts with estimated parameters. Journal of Quality Technology, 47(2), 127-138.
  • Schilling, E.G., & Nelson, P.R. (1976). The effect of non-normality on the control limits of X charts. Journal of Quality Technology, 8(4), 183-188.
  • Scrucca, L. (2004). qcc: An R package for quality control charting and statistical process control. R News, 4(1), 11-17.
  • Shewhart, W.A. (1931). Economic control of quality of manufactured product. New York: Van Nostrand.
  • Silva, P.N., & Skinner, C.J. (1995). Estimating distribution functions with auxiliary information using poststratification. Journal of Official Statistics, 11(3), 277-294.
  • Woodall, W.H., & Montgomery, D.C. (2000). Using ranges to estimate variability. Quality Engineering, 13(2), 211-217.
  • Yourstone, S. A., & Zimmer, W. J. (1992). Non‐normality and the design of control charts for averages. Decision Sciences, 23(5), 1099-1113.