El uso del suelo en las cuencas de captación condiciona la calidad del agua en embalses del sudeste peninsular ibérico

  1. León-Palmero, Elizabeth 1
  2. Reche, Isabel 1
  3. Morales-Baquero, Rafael 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2021

Volumen: 25

Número: 3

Páginas: 205-213

Tipo: Artículo

DOI: 10.4995/IA.2021.15690 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

Se examinan los contenidos de nitrógeno total (NT), fósforo total (PT) y las relaciones NT/PT, en 12 embalses del sur-este de la Península Ibérica, con objeto de indagar en la influencia del uso del suelo en las cuencas de captación sobre el estado trófico de estos sistemas. Los embalses mostraron relaciones NT/PT que indican limitación por P o co-limitación según el sistema considerado. Según los análisis de regresión en árbol univariados efectuados, sólo el porcentaje de áreas cultivadas clasifica significativamente a los embalses por sus contenidos en P y N, mientras el porcentaje de áreas urbanas agrupa, además, a los embalses por los contenidos en N. La relación positiva encontrada entre el porcentaje de áreas cultivadas y el estado trófico de los embalses, cuantificado según el índice de Carlson (TSI), indica un deterioro en la calidad del agua en los embalses inducido por la actividad agrícola.

Referencias bibliográficas

  • Álvarez-Salgado, X.A., Miller, A.E.J. 1998. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements, Marine Chemistry, 62(3), 325–333. https://doi.org/10.1016/S0304-4203(98)00037-1
  • American Public Health Association (APHA) 1992. Standard methods for the examination of water and wastewater Washington, DC, USA: American Public Health Association. 18th edn. Edited by A.E. Greenberg, L.S. Clesceri, y A.D. Eaton.
  • Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22, 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
  • Crawley, M.J. 2002. Statistical computing. An introduction to data analysis using S-Plus. Wiley, Chichester.
  • Downing, J.A., McCauley, E. 1992. The nitrogen:phosphorus relationship in lakes. Limnology and Oceanography, 37(5), 936–945. https://doi.org/10.4319/lo.1992.37.5.0936
  • Hayes, N.M., Deemer, B.R., Corman, J.R., Razavi, N.R., Strock, K.E. 2017. Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnology and Oceanography Letter, 2(2), 47–62. https://doi.org/10.1002/lol2.10036
  • Guildford, S.J., Hecky, R.E. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223. https://doi.org/10.4319/lo.2000.45.6.1213
  • Knoll, L.B., Hagenbuch, E.J., Stevens, M.H., Vanni, M.J., Renwick, W.H., Denlinger, J.C., Hale, R.S., Gonzalez, M.J. 2015. Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters, 5, 203–214. https://doi.org/10.5268/IW-5.3.812
  • León-Palmero, E., Reche, I., Morales-Baquero, R. 2019. Atenuación de luz en embalses del sur-este de la Península Ibérica. Ingeniería del Agua, 23(1), 65–75. https://doi.org/10.4995/Ia.2019.10655
  • León-Palmero, E., Morales-Baquero, R., Reche, I. 2020. Greenhouse gas fluxes from reservoirs determined by watershed lithology, morphometry, and anthropogenic pressure. Environmental Research Letters, 15(4), 044012. https://doi.org/10.1088/1748-9326/ab7467
  • Prats-Rodríguez, J., Morales-Baquero, R., Dolz-Ripollés, J., Armengol-Bachero, J. 2014. Aportaciones de la limnología a la gestión de embalses. Ingeniería del Agua, 18(1), 83–97. https://doi.org/10.4995/ia.2014.3145
  • R Core Team. 2019. R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.
  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin, III, E. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H. Schellnhuber, B. Nykvist, C.A. De Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley. 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. https://doi.org/10.5751/ES-03180-140232
  • Smith, VH., Schindler D.W. 2009. Eutrophication science: where do we go from there? Trends in Ecology and Evolution, 24, 201–207. https://doi.org/10.1016/j.tree.2008.11.009
  • Thornton, K.W., Kimmel B.L., Payne F.E. (eds.) 1990. Reservoir limnology: Ecological perspectives. John Wiley& Sons.
  • Tong, S.T.Y., Chen, W. 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66, 377–393. https://doi.org/10.1006/jema.2002.0593
  • Vollenweider, R.A. 1989. Eutrophication. In: Global Freshwater Quality-A First Assessment. (Meybeck, M., D. Chapman, and R. Helmer eds). World Health Organization and the United Nations Environmental Programme, 107–120.