The use of chatbot as an element of tutorial action in university teaching
ISSN: 2254-5883
Datum der Publikation: 2021
Ausgabe: 10
Seiten: 1-14
Art: Artikel
Andere Publikationen in: ReiDoCrea: Revista electrónica de investigación y docencia creativa
Zusammenfassung
Es de vital importancia ayudar y guiar el aprendizaje de los estudiantes a través de diferentes herramientas y actividades educativas que faciliten su participación en clase y permitan reducir la tasa de abandono. Tradicionalmente, las actividades de tutorización para estudiantes universitarios, se limita a reuniones presenciales en las que los estudiantes plantean preguntas al docente. Sin embargo, dadas las circunstancias actuales y ante un mundo conectado con muchos sistemas de información disponibles, se necesitan herramientas docentes innovadoras que faciliten el aprendizaje y una ágil resolución de dudas. Método: en este trabajo se propone la utilización de un sistema de tutorías, basado en el uso de un chatbot como experiencia educativa novedosa y orientada a motivar y facilitar el aprendizaje en estudiantes universitarios. Resultados: estudio aporta la implementación de un chatbot que responde de forma rápida y precisa, disponible en cualquier momento para solucionar dudas y facilitar el estudio de las materias a los estudiantes. Este chatbot además permite recopilar comentarios de los propios estudiantes sobre los temas que requieren ser explicados en clase con un mayor detalle. Conclusiones: El uso del chatbot tutorial, ha permitido aumentar el compromiso y la colaboración tanto de los estudiantes como de los docentes, disminuyendo la tasa del número de estudiantes que abandonan la asignatura.
Bibliographische Referenzen
- Agarwal, R, & Wadhwa, M (2020). Review of state-of-the-art design techniques for chatbots. SN Computer Science, 1, 246.
- Aguilar-Luzon, MC, Berrios, P, & Lopez-Zafra, E (2012) The use of computer systems in the study of university subjects: Applying the theory of planned behavior and the theory of technology acceptance. Studies in Psychology, 33(2), 179-190.
- Bagozzi, RP, Davis, FD, & Warshaw, PR (1992). Development and test of a theory of technological learning and usage. Human Relations, 45, 659-686.
- Bettinger, E, Fairlie, RW, Kapuza, A, Kardanova, E, Loyalka, P, & Zakharov, A (2020). Does edtech substitute for traditional learning? experimental estimates of the educational production function. Working Paper 26967, National Bureau of Economic Research.
- Bii, P (2013). Chatbot technology: A possible means of unlocking student potential to learn how to learn. Educational Research, 4(2), 218-221.
- Bradesko, L, & Mladenic, D (2012). A survey of chabot systems through a loebner prize competition. Res Net, 2, 1-4.
- Castillo-Valdivieso, PA (2016b). Material Didáctico para el Diseño de Servidores Web de Altas Prestaciones. Editorial Técnica Avicam.
- Castillo-Valdivieso, PA (2016a). Diseño de Prestaciones. Editorial Técnica Avicam.
- Clarizia, F, Colace, F, Lombardi, M, Pascale, F, & Santaniello, D (2018). Chatbot: An education support system for student. In
- Castiglione, A, Pop, F, Ficco, M, & Palmieri, F, editors, Cyberspace Safety and Security, 291-302, Cham. Springer International Publishing.
- Coniam, D (2014). The linguistic accuracy of chatbots: usability from an ESL perspective. Text & Talk, 34(5), 545–567.
- Daniels, H (2016). Vygotsky and pedagogy. London: Routledge.
- Davis, FD (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MS Quartely, 13, 319–340.
- Davis, FD (1993). User acceptance of computer technology: system characteristics, user perceptions. International Journal ManMachine Studies, 38(3), 475–87.
- Dutta, D (2017). Developing an intelligent chat-bot tool to assist high school students for learning general knowledge subjects. Georgia Institute of Technology. Atlanta.
- Faris, H, Aljarah, I, Habib, M, & Castillo, PA (2020). Hate speech detection using word embedding and deep learning in the arabic language context. In Marsico, MD, di Baja, GS, & Fred, ALN, editors, Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2020, Valletta, Malta, February 22-24, 2020, 453-460. SCITEPRESS.
- Fryer, LK, Ainley, M, Thompson, A, Gibson, A, & Sherlock, Z (2017). Stimulating and sustaining interest in a language course: An experimental comparison of chatbot and human task partners. Computers in Human Behavior, 75, 461-468.
- Gong, L (2008). How social is social responses to computers? the function of the degree of anthropomorphism in computer representations. Computers in Human Behavior, 24(4), 1494-1509.
- Griol, D, Molina, J, & de Miguel, A (2014). The geranium system: Multimodal conversational agents for e-learning. Distributed Computing and Artificial Intelligence, 11th International Conference, 290, 219–226.
- Hayashi, Y (2014). Togetherness: Multiple pedagogical conversational agents as companions in collaborative learning. In K TrausanMatu et al. (Eds.), Intelligent Tutoring Systems (ITS2014). Berlin: Springer-Verlag Berlin, 8474:114–123.
- Heller, B, Proctor, M, Mah, D, Jewell, L, & Cheung, B. (2005). Freudbot: An investigation of chatbot technology in distance education. In Kommers, P. and Richards, G., editors, Proceedings of EdMedia + Innovate Learning 2005, pages 3913–3918, Montreal, Canada. Association for the Advancement of Computing in Education (AACE).
- Hevner, A (2007). A three cycle view of design science research. Scandinavian Journal of Information Systems, 19.
- Hevner, A, March, S, Park, J, & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.
- Hone, KS, & El-Said, G. R. (2016). Exploring the factors affecting mooc retention: A survey study. Computers & Education, 98, 157- 168.
- Hoy, MB (2018). Alexa, Siri, Cortana, and more: An introduction to voice assistants. Medical reference services quarterly, 37, 81–88.
- Huang, J, Kwon, KLO, & Kim, Y (2017). A chatbot for a dialoguebased second language learning system. CALL in a climate of change: adapting to turbulent global conditions: 151.
- Hutchens, JL (1996). How to pass the turing test by cheating. School of Electrical, Electronic and Computer Engineering research report TR97-05. Perth: University of Western Australia.
- Kanan, T, Sadaqa, O, Aldajeh, A, Alshwabka, H, AL-dolime, W, AlZubi, S, Elbes, M, Hawashin, B, & Alia, MA (2019). A review of natural language processing and machine learning tools used to analyze arabic social media. In IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pages 622–628.
- Kerly, A, Hall, P, & Bull, S (2007). Bringing chatbots into education: Towards natural language negotiation of open learner models. Knowledge-Based Systems, 20(2), 177-185. AI 2006.
- Kim, HY (2020). More than tools: Emergence of meaning through technology enriched interactions in classrooms. International Journal of Educational Research, 100, 101-543.
- Kim, HY, & Baylor, A (2000). Research-based design of pedagogical agent roles: a review, progress, and recommendations. International Journal of Artificial Intelligence Education, 26(1), 160–169.
- Laurillard, D (2013). Rethinking university teaching: A conversational framework for the effective use of learning technologies. Routledge.
- Littleton, K, & Wegerif, R. (2003). Special issue on deliberation with computers: exploring the distinctive contribution of new technologies to collaborative thinking and learning. International Journal of Educational Research, 39(8):787 – 791.
- Mattsson, L. G. and Andersson, P (2019). Private-public interaction in public service innovation processes-business model challenges for a start-up edtech firm. Journal of Business and Industrial Marketing, 34(5), 1106–1118.
- Nguyen, TD, Cannata, M, & Miller, J (2018). Understanding student behavioral engagement: Importance of student interaction with peers and teachers. The Journal of Educational Research, 111(2), 163–174.
- Pimmer, C, Bruhlmann, F, Odetola, TD, Oluwasola, DO, Dipeolu, O, & Ajuwon, AJ (2019). Facilitating professional mobile learning communities with instant messaging. Computers & Education, 128, 102-112.
- Ponti, EM, O’Horan, H, Berzak, Y, Vulic, I, Reichart, R, Poibeau, T, Shutova, E, & Korhonen, A (2019). Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, 45(3), 559–601.
- Riel, J (2020). Essential features and critical issues with educational chatbots: Toward personalized learning via digital agents. In M. Khosrow-Pour (Ed.), Handbook of Research on Modern Educational Technologies, Applications, and Management. Hershey, PA: IGI Global.
- Roblyer, M, McDaniel, M, Webb, M, Herman, J, & Witty, JV (2010). Findings on facebook in higher education: A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and Higher Education, 13(3), 134–140.
- Shah, H, Warwick, K, Vallverdu, J, & Wu, D (2016). Can machines talk? comparison of eliza with modern dialogue systems. Computers in Human Behavior, 58, 278-295.
- Sjostrom, J, Aghaee, N, Dahlin, M, & Agerfalk, P (2018). Designing chatbots for higher education practice. Proceedings of the 2018 AIS SIGED International Conference on Information Systems Education and Research, page 4.
- Smutny, P, & Schreiberova, P (2020). Chatbots for learning: A review of educational chatbots for the facebook messenger. Computers & Education, 151, 103862.
- Srinivasa-Desikan, B (2018). Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing.
- Tallyn, E, Fried, H, Gianni, R, Isard, A, & Speed, C (2018). The ethnobot: Gathering ethnographies in the age of iot. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI18, pages 1–13, New York, NY, USA. Association for Computing Machinery.
- TEAM, D (2020). Python chatbot project. learn to build your first chatbot using nltk and keras.
- Thompson, C (2007). Conversation between two robots’ drifts into flirtation and philosophy. discover magazine. Computers in Human Behavior, 29, 845–857.
- Twyman, JS, & Heward, WL (2018). How to improve student learning in every classroom now. International Journal of Educational Research, 87, 78-90.
- Winkler, R, & Söllner, M (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. In Academy of Management Annual Meeting (AOM).
- Yildirim, I (2017). The effects of gamification-based teaching practices on student achievement and students’ attitudes toward lessons. The Internet and Higher Education, 33, 86–92.