Secreted Frizzled – Related Protein 4 y el cáncer de mama

  1. Ramírez Tortosa, María del Carmen 1
  2. Gálvez-Navas, José María 2
  3. Pérez-Ramírez, Cristina 2
  1. 1 Bioquímica y Biología molecular. Universidad de Granada
  2. 2 Universidad de Granada, Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Granada; Universidad de Granada, Centro de Investigaciones Biomédicas (CIBM), Instituto de Nutrición y Tecnología de los Alimentos “José Mataix” (INYTA), Armilla
Revista:
Ars pharmaceutica

ISSN: 2340-9894 0004-2927

Año de publicación: 2021

Volumen: 62

Número: 4

Páginas: 438-450

Tipo: Artículo

DOI: 10.30827/ARS.V62I4.21740 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ars pharmaceutica

Resumen

Introducción: el correcto funcionamiento y la supervivencia de la célula vienen mediados por multitud de procesos clave. El delicado equilibrio que se requiere entre dichos fenómenos hace que un error en los mecanismos de control desencadene el inicio de la carcinogénesis. Dentro de las rutas metabólicas encargadas de su regulación se encuentran las vías de señalización del Wnt. De esta forma, aquellas moléculas que intervengan en dichas vías presentarán un papel clave para el estudio de la patología, entre las que destaca secreted Frizzled – Related Protein 4 (sFRP4). Método: se ha llevado a cabo una búsqueda bibliográfica en bases de datos de referencia, como es el caso de Medline, Scopus o Web of Science. Resultados: a sFRP4 se le ha otorgado el papel de modulador negativo de las vías de Wnt debido a su capacidad de competir por los ligandos Wnt y evitar el inicio de dichas rutas. Por lo tanto, sFRP4 será esencial en el control del inicio y desarrollo del cáncer en aquellos tejidos donde se exprese la proteína, dentro de los que se considera el tejido mamario. Conclusiones: los recientes estudios acerca de la implicación de sFRP4 en el desarrollo de diversas patologías, justifican que la proteína haya captado la atención en los últimos años. De esta forma, se puede afirmar que sFRP4 presenta un interesante potencial como biomarcador en el tratamiento, diagnóstico y pronóstico del cáncer de mama, entre otras enfermedades.

Referencias bibliográficas

  • Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signaling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 2019; 109:23–32. doi: 10.1016/j.biocel.2019.01.016
  • Granados-Principal S, Quiles JL, Ramírez-Tortosa C, et al. Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Mol Nutr Food Res. 2011; 55(1):117–126. doi: 10.1002/mnfr.201000220
  • Pohl S, Scott R, Arfuso F, Perumal V, Dharmajaran A. Secreted frizzled – related protein 4 and its implications in cancer and apoptosis. Tumor Biol. 2014; 36(1):143–152. doi: 10.1007/s13277-014-2956-z
  • Vincent KM, Postovit L M. A pan – cancer analysis of secreted Frizzled – related proteins: re – examining their porposed tumour suppressive function. Sci Rep. 2017; 7:42719. doi: 10.1038/srep42719
  • Pawar NM, Rao P. Secreted frizzled – realted protein 4 (sFRP4) update: A brief review. Cell Signal. 2018; 45:63–70. doi: 10.1016/j.cellsig.2018.01.019
  • Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled – related proteins. J Cell Commun. 2018; 12(1):103–112. doi: 10.1007/s12079-017-0398-2
  • Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C. Wnt signaling in human and mouse breast cancer: Focusing on Wnt ligands, receptors and antagonists. Cancer Sci. 2018; 109(11):3368–3375. doi: 10.1111/cas.13771
  • Wu K, Li Z H, Yi W, et al. Restoration of secreted frizzled-related protein 1 suppresses growth and increases cisplatin sensitivity in laryngeal carcinoma cells by downregulating NHE 1. Int J Clin Exp Pathol. 2017; 10(8):8334–8343.
  • Baharudin R, Yew Fu Tieng F, Lee LH, Saykima Ab Mutalib N. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers. 2020; 12 (445):1–20. doi: 10.3390/cancers12020445
  • Yu J, XIe Y, Li M, et al. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett. 2019; 18(4):3481–3492. doi: 10.3892/ol.2019.10709
  • Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep. 2017; 69(3):403–408. doi: 10.1016/j.pharep.2017.01.001
  • Huang C, Ye Z, Wan J, et al. Secreted Frizzled – Related Protein 2 Is Associated with Disease Progression and Poor Prognosis in Breast Cancer. Dis Markers. 2019:1– 8. doi: 10.1155/2019/6149381
  • Bernascone I, González T, Barea MD, et al. Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels. Nat Commun. 2019; 10(1):1–17. doi: 10.1038/s41467-019-10509-1
  • Bravo D, Salduz A, Shogren KL, et al. Decreased local and systemic levels of sFRP3 protein in osteosarcoma patients. Gene. 2018; 674:1–7. doi: 10.1016/j.gene.2018.06.059
  • Claudel M, Jouzeau JY, Cailotto F. Secreted Frizzled – related proteins (sFRPs) in osteoarticular diseases: much more than simple antagonists of Wnt signaling? The FEBS J. 2019; 286(24):4832–4851. doi: 10.1111/febs.15119
  • Chen Y, Zou D, Wang N, et al. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther. 2018; 11:8761–8772. doi: 10.2147/OTT.S181146
  • Xu Q, Lü Z, Wang X, Zhu Q, Wu H. Secreted frizzled – related protein 5 suppresses aggressive phenotype and reverses docetaxel resistance in prostate cancer. J Investig Med. 2019; 67(6):1009–1017. doi: 10.1136/jim-2018-000849
  • Lin HW, Fu C-F, Chang MC, et al. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics. 2018; 10(11):1397–1413. doi: 10.2217/epi-2018-0035
  • Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled – related protein 4 and its implication in obesity and type – 2 diabetes. Life. 2019; 71(11):1701–1710. doi: 10.1002/iub.2123
  • Azuma K, Zhou Q, Kubo K. Morphological and molecular characterization of the senile osteoporosis in senescence – accelerated mouse prone 6 (SAMP6). Med Mol Morphol. 2018; 51:139–146. doi: 10.1007/s00795-018-0188-9.
  • Bergmann K, Sypniewska G. Secreted frizzled – related protein 4 (SFRP4) and fractalkine (CX3CL1) – Potential new biomarkers for ß – cell dysfunction and diabetes. Clin Biochem. 2014; 47(7–8):529–532. doi: 10.1016/j.clinbiochem.2014.03.007
  • Gene: SFRP4 (ENSG00000106483) – Marked – up Sequence – Homo sapiens – Ensmbl Genome Browser 91. [monografía en Internet]. Granada: Ensembl.org.; 2021 [acceso 30 de marzo de 2021]. Disponible en: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000106483;r=7:37905932-38025695.
  • Kitazawa S, Haraguchi R, Kitazawa R. Morphology – oriented epigenetic research. Histochem Cell Biol. 2018; 150(1):3–12. doi: 10.1007/s00418-018-1675-8
  • Carmon KS, Loose DS. SFRP4 (Secreted Frizzled – Related Protein 4). Atlas Genet Cytogenet Oncol Hematol. 2010; 14 (3): 296 – 300.
  • Perumal V, Krishnan K, Gratton E, Dharmarajan AM, Fox SA. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a. Int J Biochem Cell Biol. 2015; 64:91–96. doi: 10.1016/j.biocel.2015.03.010
  • Wilson DH, Jarman EJ, Mellin RP, et al. Non – canonical Wnt signaling regulates scarring in biliary diasease via the planar cell polarity receptors. Nat Commun. 2020; 11(1):11–13. doi: 10.1038/s41467-020-14283-3
  • Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β – catenin in bone healing of hip arthroplasty patients. Bone. 2017; 107:66–77. doi: 10.1016/j.bone.2017.11.004
  • Yang S, Wu Y, Xu TH, et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature. 2018; 560(7720):666–670. doi: 10.1038/s41586-018-0447-x
  • Nusse R, Clevers H. Wnt/beta – Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017; 169(6):985–999. doi: 10.1016/j.cell.2017.05.016
  • Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018; 145(11):1–8. doi: 10.1242/dev.146589
  • Galluzzi L, Spranger S, Fuchs E, López – Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019; 29 (1): 44 – 65. doi: 10.1016/j.critrevonc.2015.12.005
  • Chae W-J, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol. 2018; 39(10):830–847. doi: 10.1016/j.it.2018.08.006
  • van Schie EH, van Amerongen R. Aberrant Wnt/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol. 2020; 8: 25. doi: 10.3389/fcell.2020.00025
  • Zhang S, Lin H, Kong S, et al. Physiological and molecular determinations of embryo implantation. Mol Asp Med. 2013; 34(5):939–980. doi: 10.1016/j.mam.2012.12.011
  • Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal. 2010; 22(5):717–727. doi: 10.1016/j.cellsig.2009.11.021
  • Taciak B, Puszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 2018; 96(2):185–196. doi: 10.26402/jpp.2018.2.07
  • van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in mulitple mieloma: molecular mechanism and targeting options. Leukemia. 2019; 33(5):1063–1075. doi: 10.1038/s41375-019-0404-1
  • Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer. Mol Pharmacol. 2020; 97(2):72–89. doi: 10.1124/mol.119.117978
  • Duchartre Y, Kim Y M, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016; 99:141–149.
  • Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017; 51(5):1357–1369. doi: 10.3892/ijo.2017.4129
  • Nishita M, Saji T, Minami Y. [Non – canonical Wnt signaling and celular responses]. Clin Calcium. 2019; 29(3):291–297. doi: 10.20837/4201903291
  • Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 2020; 72: 109636.
  • Amal H, Gong G, Gjoneska E, Lewis S M, Wishnok JS, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019; 9(1):44. doi: 10.1038/s41398-019-0388-7
  • Li X, Ortiz M A, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med. 2020; 245(5):411–426. doi: 10.1177/1535370220901683
  • Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci. 2018; 75(20):3683–3692. doi: 10.1007/s00018-018-2881-1
  • Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis. 2017;6(7):e364. doi: 10.1038/oncsis.2017.69
  • López-Escobar B, Caro-Vega JM, Vijayraghavan D S, et al. The non – canonical Wnt – PCP pathway shapes the mouse caudal neural plate. Developmet. 2018; 145(9):1–15. doi: 10.1242/dev.157487
  • Wang M, Marco P, Capra V, Kibar Z. Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells. 2019; 8(10):1198. doi: 10.3390/cells8101198
  • Zhan T, Rindtorff N, Boutrons M. Wnt signaling in cancer. Oncogene. 2017; 36(11):1461–1473. doi: 10.1038/onc.2016.304
  • Mäkitie RE, Constantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne). 2019; 10: 70. doi: 10.3389/fendo.2019.00070
  • Mandal S, Gamit N, Varier L, Dharmarajan A, Warrier S. Inhibition of breast cancer stem – like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA – 499a – 5p. Life Sci. 2021; 265: 118854. doi: 10.1016/j.lfs.2020.118854
  • Awasthi A, Hande MH, Rao P, Srinivas T, Hanumaiah G. Association of Secreted Frizzled Related Protein 4 with Type 2 Diabetes Mellitus and its complications: A South Indian hospital based case control study. Clin Epidemiology Glob Health. 2021; 9:171–174. doi:10.1016/j.cegh.2020.08.009
  • Tharmapalan P, Mahendrahingam M, Berman H K, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J. 2019; 38(14):1–19. doi: 10.15252/embj.2018100852
  • Visweswaran M, Keane KN, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The Influence of Breast Tumor – Derived Factors and Wnt Antagonism on the transformation of Adiponse – Derived Mesenchymall Stem Cells Into Tumour – Associated Fibroblasts. Cancer Microenv. 2018; 11(1):71–84. doi: 10.1007/s12307-018-0210-8
  • Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Regulation of Cancer Stem Cells Metabolism by Secreted Frizzled – Related Protein 4 (sFRP4). Cancers. 2018; 10(2):40. doi: 10.3390/cancers10020040
  • Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci. 2020; 62(4):394–356. doi: 10.1016/j.job.2020.08.001
  • Li A, Schleicher SM, Andre F, Mitri ZI. Genomic Alteration in Metastasic Breast Cancer and Its Treatment. Am Soc Clin Oncol Educ Book. 2020; 40:1–14. doi: 10.1200/EDBK_280463
  • Testa V, Castelli G, Pelosi E. Breast Cancer: A Moleculary Heterogeneous Disease Needing Subtype – Specific Treatment. Med Sci. 2020; 8(1):18. doi: 10.3390/medsci8010018
  • Ayala de la Peña F, Andrés R, García-Sáenz JA, Manso L, Margelí M, et al. SEOM clinical guidelines in early stage breast cancer. Clin Transl Oncol. 2018; 21(1):18–30. doi: 10.1007/s12094-018-1973-6
  • Chacón López-Muñiz JI, de la Cruz Merino L, Gavilá Gregori J, et al. SEOM clinical guidelines in advanced and recurrent breast cancer. Clin Transl Oncol. 2018; 21(1):31–45. doi: 10.1007/s12094-018-02010-w
  • Deshmukh A, Kumar S, Arfuso F, Newsholme P, Dharmarajan A. Secreted Frizzled – Related Protein 4 (sFRP4) chemo – sensitizes cancer stem cells derived from human breast, prostate, and ovary human cell lines. Sci Rep. 2017; 7(1):2256. doi: 10.1038/s41598-017-02256-4
  • Cook D J, Kallus J, Jörnsten R, Nielsen J. Molecular natural history of breast cancer: Leveraging transcriptomics to predict breast cancer progression and aggressiveness. Cancer Med. 2020; 9(10):3551–3562. doi: 10.1002/cam4.2996
  • Bhuvanalakshmi G, Basappa, Rangappa KS, et al. Breast Cancer Stem – Like Cells Are Inhibited by Diosgenin, a Steroida Saponin, by the Attenuation of Wnt β – catenin Signaling via the Wnt Antagonist Secreted Frizzled Related Protein – 4. Front Pharmacol. 2017; 8:124. doi: 10.3389/fphar.2017.00124