¿Cómo modelizan los futuros profesores en situaciones de área y perímetro? El papel de las unidades y de las fórmulas

  1. Montejo-Gámez, Jesús
  2. Fernández-Ahumada, Elvira
  3. Adamuz-Povedano, Natividad
Revista:
Modelling in Science Education and Learning

ISSN: 1988-3145

Año de publicación: 2019

Volumen: 12

Número: 1

Páginas: 5-20

Tipo: Artículo

DOI: 10.4995/MSEL.2019.11001 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Modelling in Science Education and Learning

Resumen

Se presenta una investigación que explora el tipo de modelo que los futuros profesores de educación primaria y secundaria desarrollan cuando trabajan en situaciones de medida. La muestra empleada estuvo compuesta por un total de 12 alumnos de máster de formación de profesorado y 13 estudiantes del grado en educación primaria, que resolvieron en grupos una tarea diseñada específicamente para trabajar la medida a través de la modelización. El análisis de los modelos producidos por los futuros profesores reveló gran riqueza de ideas y evidenció limitaciones al uso de fórmulas para el cálculo y estimación de áreas. Los resultados también indican relación entre la cercanía del modelo con la situación en contexto y la tendencia de los participantes a validarlo, así como la importancia del formato de la tarea empleada sobre los modelos producidos.

Referencias bibliográficas

  • Ärlebäck, J. B. (2009). Exploring the solving process of group solving realistic Fermi problems from the perspective of the Anthropological theory of didactics. En M. Pytlak, T. Rowland y W Swoboda (eds.), Proceedings of the Seventh Conference of European Research in Mathematics Education (CERME 7), (pp. 1010-1020). CERME: Rzeszów (Poland).
  • Blomhøj, M., y Højgaard, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123‐139.
  • Blum, W. y Leiss, D. (2007). How do students’ and teachers deal with modelling problems? En C. Haines et al. (Eds), Mathematical Modelling: Education, Engineering and Economics. (pp. 222-231). Chichester: Horwood.
  • Blum, W. y Borromeo-Ferri, R. (2009). Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58.
  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38 (2), 86-95.
  • Bukova-Güzel, E. (2011). An examination of pre-service mathematics teachers’ approaches to construct and solve mathematical modelling problems, Teaching Mathematics and Its Applications 30, 19-36
  • Burkhardt, H. (2004). Establishing Modelling in the Curriculum: Barriers and Levers. En H.W.Henn y W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education: Pre-Conference. Dortmund, Germany: ICMI.
  • Cabassut, R. y Ferrando, I. (2017). Difficulties in Teaching Modelling: A French-Spanish Exploration. En G.A., Stillman, W. Blum, y G. Kaiser (Eds.), Mathematical Modelling and Applications: Crossing and Researching Boundaries in Mathematics Education (pp.223-232) Springer International Publishing.
  • Chevallard, Y. (1989). Le passage de l’arithmétique à l’algébrique dans l’enseignement des mathématiques au collège - Deuxième partie: Perspectives curriculaires : la notion de modelisation. Petit X, 19, 45-75.
  • Chevallard, Y., Bosch, M. y Gascón, J. (1997). Estudiar matemáticas. El eslabón perdido entre la enseñanza y el aprendizaje. Barcelona: ICE/Horsori.
  • Colwell, J. y Enderson, C. M. (2016). “When I hear literacy”: Using pre-service teachers’ perceptions of mathematical literacy to inform program changes in teacher education. Teaching and Teacher Education 53, 63-74
  • Comisión Europea/EACEA/Eurydice (2012). El desarrollo de las competencias clave en el contexto escolar en Europa: desafíos y oportunidades para la política en la materia. Informe de Eurydice. Luxemburgo: Oficina de Publicaciones de la Unión Europea.
  • De Lange, J. (2003). Mathematics for literacy. En B.L. Madison, y L.A. Steen (Eds.), Quantitative literacy. Why numeracy matters for schools and colleges (pp. 75−89). Princeton, NJ: The National Council on Education and the Disciplines.
  • Doerr, H. (2007). What Knowledge do teachers need for teaching mathematics through applications and modelling?. En Blum, Galbrait, Henn y Niss (Eds). Modelling and applications in mathematics education. The 14 th ICMI Study. (pp. 69-78). New York: Springer.
  • Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, The Netherlands: Riedel Publishing Company.
  • Gallart, C., Ferrando, I., García-Raffi, L. M. (2014). Implementación de tareas de modelización abiertas en el aula de secundaria, análisis previo. En M. T. González, M. Codes, D. Arnau, T. Ortega, Investigación en educación matemática (pp. 327-336). Salamanca: SEIEM.
  • Garcia, F. J., Gascón, J., Ruiz, L., y Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM, 38(3), 226-246.
  • Gravemeijer, K. y Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39 (1-3), 111–129.
  • Hıdıroğlu, Ç. N., Dede, A. T., Kula-Ünver, S. y Bukova-Güzel, E. (2017). Mathematics Student Teachers’ Modelling Approaches While Solving the Designed Eşme Rug Problem. EURASIA Journal of Mathematics Science and Technology Education, 13 (3), 873-892
  • Huincahue Arcos, J., Borromeo-Ferri, R., y Mena-Lorca, J. (2018). El conocimiento de la modelación matemática desde la reflexión en la formación inicial de profesores de matemática. Enseñanza de las ciencias, 36(1), 99-115.
  • Kaiser, G. (2014). Mathematical modelling and applications in education. En Encyclopedia of mathematics education (pp. 396-404). Springer, Dordrecht.
  • Kaiser, G., Blomhøj, M., y Sriraman, B. (2006). Mathematical modelling and applications: empirical and theoretical perspectives. ZDM - Zentralblatt für Didaktik der Mathematik, 38(2), 82-85.
  • Lesh, R. y Harel, G. (2003). Problem solving, modeling and local conceptual development. Mathematical Thinking and Learning, 5, 157-189.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., y Post, T. (2000), Principles for Developing Thought-Revealing Activities for Students and Teachers, en A. Kelly y R. Lesh (eds.), Research Design in Mathematics and Science Education, Lawrence Erlbaum Associates, Mahwah, New Jersey, 591-646.
  • Mathews, S. y Reed, M. (2007). Modelling for pre-service teachers. En Haines, Galbraith, Blum y Khan (Eds.), Mathematical modelling (ICTMA 12): Education, Engineering and Economics. (pp. 458-464). Chichester: Horwood Publishing.
  • Montejo-Gámez, J., y Fernández-Ahumada, E. (2019). The notion of mathematical model for educational research: insights of a new proposal. Aceptado para CERME 11.
  • Montejo-Gámez, J., Fernández-Ahumada, E., Jiménez-Fanjul, N., Adamuz-Povedano, N., y León-Mantero, C. (2017). Modelización como proceso básico en la resolución de problemas contextualizados: un análisis de necesidades. En J.M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M.L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 347-356). Zaragoza: SEIEM.
  • Montoya Delgadillo, E. Viola, F. and Vivier, L. (2017). Choosing a Mathematical Working Space in a modelling task: The influence of teaching. En Dooley, T., y Gueudet, G. (Eds.), Proceedings of the CERME10 (pp. 956-963). Dublin, Ireland: DCU Institute of Education and ERME.
  • Niss, M. (1999). Aspects of the nature and state of research in mathematics education. Educational Studies in Mathematics, 40(1), 1-24.
  • Niss, M. (2003). Mathematical Competencies and the Learning of Mathematics: The Danish KOM Project. En A. Gagatsis y S. Papastavridis (Eds), 3rd Mediterranean Conference on Mathematical Education (pp. 115–124). Athens, Greece: The Hellenic Mathematical Society.
  • Niss, M. (2012). Models and modelling in mathematics education. En Mathematical biology. Degree programs in mathematical biology. (pp. 49-52). Zurich, Switzerland: European Mathematical Society Newsletter.
  • Niss, M., y Højgaard, T. (Eds.) (2011). Competencies and Mathematical Learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde: IMFUFA/NSM, Roskilde University.
  • NCTM. (2000). Principles and Standards for School Mathematics. School Science and Mathematics, 47(8), 868–279. https://doi.org/10.1111/j.1949-8594.2001.tb17957.x
  • OCDE (2013). Marcos y pruebas de evaluación de PISA 2012: Matemáticas, Lectura y Ciencias. Madrid: MECD.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
  • Sriraman, B. (2006). Conceptualizing the model-eliciting perspective of mathematical problem solving. En M. Bosch (Ed.), Proceedings of the CERME4 (pp. 1686-1695). Sant Feliu de Guíxols: FUNDEMI IQS, Universitat Ramon Llull.
  • Stacey, K. (2015). The Real World and the Mathematical World. En K. Stacey y R. Turner (Eds.), Assessing Mathematical Literacy (pp. 57–84). Zurich: Springer. https://doi.org/10.1007/978-3-319-10121-7
  • Van den Heuvel-Panhuizen, M. y Drijvers, P. (2014). Realistic mathematics education. En S. Lerman (Ed.) Encyclopedia of Mathematics Education (pp. 521-525). Amsterdam: Springer. https://doi.org/10.1007/978-94-007-4978-8.
  • Venkat, H. y Winter, M. (2015). Boundary objects and boundary crossing for numeracy teaching. ZDM Mathematics Education 47, 575-586.