Evaluación de los procesos superficiales de escorrentía en cárcavas originadas en olivares convencionalesun apartado a tener en cuenta en la planificación territorial

  1. Jesús Rodrigo-Comino 1
  2. Encarnación V. Taguas 2
  3. Manuel K. Seeger 1
  4. Johannes B. Ries 1
  1. 1 University of Trier
    info

    University of Trier

    Tréveris, Alemania

    ROR https://ror.org/02778hg05

  2. 2 Universidad de Córdoba
    info

    Universidad de Córdoba

    Córdoba, España

    ROR https://ror.org/05yc77b46

Revista:
Revista de Geografía Norte Grande

ISSN: 0718-3402

Año de publicación: 2019

Número: 74

Páginas: 229-248

Tipo: Artículo

DOI: 10.4067/S0718-34022019000300229 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista de Geografía Norte Grande

Resumen

Se analiza la respuesta hidrológica de una cárcava efímera frente a un evento de lluvia equivalente de frecuencia "ordinaria" (=1 año) a partir de una simulación de escorrentía en una cuenca experimental con olivar en Puente Genil, Córdoba (España). Mil litros de agua fueron bombeados durante 10 minutos y la descarga total, la velocidad superficial de avance de frente de flujo, la concentración de sedimentos y los cambios morfológicos en el perfil transversal fueron calculados. Los resultados mostraron elevadas diferencias entre las tasas de escorrentía de hasta un 17% entre las condiciones "secas" y "húmedas". La concentración de sedimentos instantánea llegó a alcanzar valores de hasta 40 g l-1. Se concluye que las cárcavas en olivares convencionales son capaces de registrar elevadas tasas de erosión y escorrentía, particularmente bajo condiciones de mayor humedad. Se requiere más información y atención a las medidas de control sobre la erosión por el flujo concentrado de la escorrentía en la planificación agrícola.

Referencias bibliográficas

  • ALBARADEYIA, I.,HANI, A.,SHAHROUR, I.. (2011). WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region. Environmental Monitoring and Assessment. 180. 537
  • ALONSO, C.V.,BENNETT, S.J.,STEIN, O.R.. (2002). Predicting head cut erosion and migration in concentrated flows typical of upland areas. Water Resources Research. 38. 39
  • ÁLVAREZ-MOZOS, J.,ABAD, E.,GIMÉNEZ, R.,CAMPO, M.A.,GOÑI, M.,ARIVE, M.,CASALÍ, J.,DÍEZ, J.,DIEGO, I.. (2014). Evaluation of erosion control geotextiles on steep slopes. Part 1: Effects on runoff and soil loss. CATENA. 118. 168
  • ANGRILL, S.,PETIT-BOIX, A.,MORALES-PINZÓN, T.,JOSA, A.,RIERADEVALL, J.,GABARRELL, X.. (2017). Urban rainwater runoff quantity and quality - A potential endogenous resource in cities?. Journal of Environmental Management. 189. 14-21
  • ARNÁEZ, J.,RUIZ, P.,LASANTA, T.,ORTIGOSA, L.M.,LLORENTE, J.A.,PASCUAL, N.E.,LANA-RE-NAULT, N.. (2012). Efectos de las rodadas de tractores en la escorrentía y erosión de suelos en laderas cultivadas con viñedos. Cuadernos de investigación geográfica. 115
  • ASBJORNSEN, H.,HERNANDEZ-SANTANA, V.,LIEBMAN, M.,BAYALA, J.,CHEN, J.,HELMERS, M.,ONG, C.K.,SCHULTE, L.A.. (2014). Targeting perennial vegetation in agricultural landscapes for en-hancing ecosystem services. Renewable Agriculture and Food Systems. 29. 101
  • BEN SLIMANE, A.,RACLOT, D.,EVRARD, O.,SANAA, M.,LEFEVRE, I.,LE BISSONNAIS, Y.. (2015). Relative contribution of rill/interrill and gully/channel erosion to small reservoir siltation in Mediterranean environments.. Land Degradation & Development. 27. 785
  • BERTALAN, L.,TÓTH, C.A.,SZABÓ, G.,NAGY, G.,KUDA, F.,SZABÓ, S.. (2016). Confirmation of a theory: reconstruction of an alluvial plain development in a flume experiment. Erdkunde. 70. 271
  • BINGNER, R.,THEURER, F.D.,YUAN, Y.. (2011). Technical Processes Documentation Version 5.2. USDA-ARS, National Sedimentation Laboratory, Oxford. MS, USA.
  • BURGUET, M.,TAGUAS, E.V.,CERDA, A.,GÓMEZ, J.A.. (2016). Soil water repellency assessment in olive groves in Southern and Eastern Spain.. CATENA. 147. 187
  • CASTILLO, C.,GÓMEZ, J.A.. (2016). A century of gully erosion research: Urgency, complexi-ty and study approaches. Earth-Science Review. 160. 300
  • CHOW, V.T.,MAIDMENT, D.R.,MAYS, L.W.. (1994). Hidrología aplicada. McGraw-Hill International editions. S.l..
  • CIBIN, R.,SUDHEER, K. P.,CHAUBEY, I.. (2010). Sensitivity and identifiability of stream flow generation parameters of the SWAT model.. Hydrological Processes. 24. 1133
  • CONFORTI, M.,BUTTAFUOCO, G.,LEONE, A.P.,AUCELLI, P.P.C.,ROBUSTELLI, G.,SCARCIGLIA, F.. (2013). Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy.. CATENA. 110. 44-58
  • DI STEFANO, C.,FERRO, V.,BURGUET, M.,TAGUAS, E.V.. (2016). Testing the long term applicability of USLE-M equation at a olive orchard microcatchment in Spain. CATENA. 147. 71
  • FLESKENS, L.,STROOSNIJDER, L.. (2007). Is soil erosion in olive groves as bad as often claimed?. Geoderma. 141. 260
  • FRANCO MARTÍNEZ, J.A.,RODRÍGUEZ ENTRENA, M.. (2009). Adopción y difusión de la agricultura ecológica en España. Factores de reconversión en el olivar andaluz. Cuadernos de Economía. 32. 137
  • GARCÍA-DÍAZ, A.,BIENES, R.,SASTRE, B.,NOVARA, A.,GRISTINA, L.,CERDA, A.. (2017). Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems & Environment. 236. 256
  • GARCÍA-DÍAZ, A.,MARQUÉS, M.J.,SASTRE, B.,BIENES, R.. (2017). Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. The Science of the Total Environment. 621. 387
  • GARCÍA-RUIZ, J.M.,BEGUERÍA, S.,NADAL-ROMERO, E.,GONZÁLEZ-HIDALGO, J.C.,LANA-RENAULT, N.,SANJUÁN, Y.. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology. 239. 160
  • GARCÍA-RUIZ, J.M.,NADAL-ROMERO, E.,LANA-RENAULT, N.,BEGUERÍA, S.. (2013). Erosion in Mediterranean landscapes: Changes and future challenges.. Geomorphology. 198. 20-36
  • GÓMEZ, J.A.,GIRÁLDEZ, J.V.,PASTOR, M.,FERERES, E.. (1999). Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil and Tillage Research. 52. 167
  • GÓMEZ, J.A.,GIRÁLDEZ, J.V.,VANWALLEGHEM, T.. (2008). Comments on "Is soil erosion in olive groves as bad as often claimed?" by L. Fleskens and L. Stroosnijder. Geoderma. 147. 93
  • GÓMEZ, J.A.,GUZMÁN, M.G.,GIRÁLDEZ, J.V.,FERERES, E.. (2009). The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research. 106. 137
  • GÓMEZ, J.A.,INFANTE-AMATE, J.,DE MOLINA, M.G.,VANWALLEGHEM, T.,TAGUAS, E.V.,LORITE, I.. (2014). Olive cultivation, its impact on soil erosion and its progression into yield impacts in Southern Spain in the past as a key to a future of increasing climate uncertainty. Agriculture. 4. 170
  • HUESO-GONZÁLEZ, P.,MARTÍNEZ-MURILLO, J.F.,RUIZ-SINOGA, J.D.. (2014). The impact of organic amendments on forest soil properties under Mediterranean climatic conditions. Land Degradation & Development. 25. 604
  • KAIRIS, O.,KARAVITIS, C.,KOUNALAKI, A.,SALVATI, L.,KOSMAS, C.. (2013). The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use and Management. 29. 597-606
  • KAVIAN, A.,GOLSHAN, M.,ABDOLLAHI, Z.. (2017). Flow discharge simulation based on land use change predictions. Environmental Earth Sciences. 76. 588
  • KAVIAN, A.,MOHAMMADI, M.,GHOLAMI, L.,RODRIGO-COMINO, J.. (2018). Assessment of the spa-tiotemporal effects of land use changes on runoff and nitrate Loads in the Talar River. Water. 10. 445
  • KRAUSHAAR, S.,HERRMANN, N.,OLLESCH, G.,VOGEL, H.-J.,SIEBERT, C.. (2014). Mound measure-ments - quantifying medium-term soil erosion under olive trees in Northern Jordan. Geomorphology. 213. 1-12
  • LASANTA, T.,NADAL-ROMERO, E.,ARNÁEZ, J.. (2015). Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environmental Science & Policy. 52. 99-109
  • LÓPEZ-VICENTE, M.,NADAL-ROMERO, E.,CAMMERAAT, E.L.H.. (2016). Hydrological connectivity does change over 70years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development. 28. 1298
  • MARTÍNEZ-CASASNOVAS, J.A.,RAMOS, M.C.,BALASCH, C.. (2013). Precision agriculture '13. Wageningen Academic Publishers. Wageningen.
  • MARTÍNEZ-CASASNOVAS, J.A.,RAMOS, M.C.,COTS-FOLCH, R.. (2010). Influence of the EU CAP on terrain morphology and vineyard cultivation in the Priorat region of NE Spain. Land Use Policy. 27. 11-21
  • MARTÍNEZ-CASASNOVAS, J.A.,RAMOS, M.C.,RIBES-DASI, M.. (2002). Soil erosion caused by ex treme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma. 105. 125
  • MARTÍNEZ-CASASNOVAS, J.A.,SÁNCHEZ-BOSCH, I.. (2000). Impact assessment of changes in land use/conservation practices on soil erosion in the Penedés-Anoia vineyard region (NE Spain).. Soil and Tillage Research. 57. 101
  • MARZEN, M.,ISERLOH, T.,DE LIMA, J.L.M.P.,FISTER, W.,RIES, J.B.. (2017). Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Science of The Total Environment. 590591. 502
  • MARZOLFF, I.,POESEN, J.. (2009). The potential of 3D gully monitoring with GIS using high-reso-lution aerial photography and a digital photogrammetry system. Geomorphology. 111. 48-60
  • NADAL-ROMERO, E.,PETRLIC, K.,VERACHTERT, E.,BOCHET, E.,POESEN, J.. (2014). Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surface Processes and Landforms. 39. 1705
  • NEARING, M.A.,POLYAKOV, V.O.,NICHOLS, M.H.,HERNANDEZ, M.,LI, L.,ZHAO, Y.,ARMENDARIZ, G.. (2017). Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope.. Hydrology and Earth System Sciences. 21. 3221
  • ORGILL, S.E.,CONDON, J.R.,CONYERS, M.K.,MORRIS, S.G.,MURPHY, B.W.,GREENE, R.S.B.. (2017). Parent material and climate affect soil organic carbon fractions under pastures in south-eastern Australia. Soil Research. 55.
  • PARRAS-ALCÁNTARA, L.,LOZANO-GARCÍA, B.,KEESSTRA, S.,CERDA, A.,BREVIK, E.C.. (2016). Longterm effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Science of The Total Environment. 571. 498-506
  • RAVEH-RUBIN, S.,WERNLI, H.. (2016). Large-scale wind and precipitation extremes in the Medite-rranean: dynamical aspects of five selected cyclone events. Quarterly Journal of the Royal Meteorological Society. 142. 3097
  • RODRIGO-COMINO, J.,GIMÉNEZ-MORERA, A.,PANAGOS, P.,POURGHASEMI, H.R.,PULIDO, M.,CERDA, A.. (2019). The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment.. Land Degradation & Development.
  • RODRIGO-COMINO, J.,TAGUAS, E.,SEEGER, M.,RIES, J.B.. (2018). Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. Journal of Hydrology. 556. 749
  • RODRIGO-COMINO, J.,WIRTZ, S.,BREVIK, E.C.,RUIZ-SINOGA, J.D.,RIES, J.B.. (2017). Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards. Journal of Mountain Science. 14. 1009
  • RUIZ-COLMENERO, M.,BIENES, R.,ELDRIDGE, D.J.,MARQUES, M.J.. (2013). Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena. 104. 153
  • RUIZ-SINOGA, J.D.,GARCIA-MARIN, R.,GABARRON-GALEOTE, M.A.,MARTINEZ-MURILLO, J.F.. (2012). Analysis of dry periods along a pluviometric gradient in Mediterranean southern Spain.. International Journal of Climatology. 32. 1558
  • SMITH, P.. (2018). Managing the global land resource. Proc. R. Soc. B. 285. 1471-12954
  • TAGUAS, Encarnación,YUAN, Y.,PEÑA, A.,AYUSO, J.L.. (2010). Predicción de cárcavas efímeras mediante el índice topográfico combinado en una microcuenca de olivar en Andalucía (España). Agrociencia. 44. 409
  • TAGUAS, E.V.,AYUSO, J.L.,PÉREZ, R.,GIRÁLDEZ, J.V.,GÓMEZ, J.A.. (2013). Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern Spain.. Geoderma. 206. 49-62
  • TAGUAS, E. V.,GUZMÁN, E.,GUZMÁN, G.,VANWALLEGHEM, T.,GÓMEZ, J.A.. (2015). Characteristics and importance of rill and gully erosion: a case study in a small catchment of a marginal olive grove. Cuadernos de Investigación Geográfica. 41. 107
  • TAGUAS, E. V.,PEÑA, A.,AYUSO, J.L.,PÉREZ, R.,YUAN, Y.,GIRÁLDEZ, J.V.. (2010). Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain. Earth Surface Processes and Landforms. 35. 750
  • TAGUAS, E.V.,YUAN, Y.,BINGNER, R.L.,GÓMEZ, J.A.. (2012). Modeling the contribution of ephemeral gully erosion under different soil managements: A case study in an olive orchard microcat-chment using the AnnAGNPS model. CATENA. 98. 1-16
  • TAGUAS, Encarnación V.,YUAN, Y.,LICCIARDELLO, F.,GÓMEZ, J.A.. (2015). Curve numbers for olive orchard catchments: case study in Southern Spain.. Journal of Irrigation and Drainage Engineering. 141. 05015003
  • VANWALLEGHEM, T.,LAGUNA, A.,GIRÁLDEZ, J.V.,JIMÉNEZ-HORNERO, F.J.. (2010). Applying a simple methodology to assess historical soil erosion in olive orchards. Geomorphology. 114. 294-302
  • WIRTZ, S.,ISERLOH, T.,ROCK, G.,HANSEN, R.,MARZEN, M.,SEEGER, M.,BETZ, S.,REMKE, A.,WENGEL, R.,BUTZEN, V.. (2012). Soil erosion on abandoned land in Andalusia: A com-parison of interrill-and rill erosion rates. ISRN Soil Science. 2012.
  • WIRTZ, S.,SEEGER, M.,RIES, J.B.. (2010). The rill experiment as a method to approach a quantification of rill erosion process activity.. Zeitschrift für Geomorphologie, NF. 54. 47-64
  • WIRTZ, S.,SEEGER, M.,RIES, J.B.. (2012). Field experiments for understanding and quantification of rill erosion processes. Catena. 91. 21-34
  • WIRTZ, S.,SEEGER, M.,ZELL, A.,WAGNER, C.,WAGNER, J.-F.,RIES, J.B.. (2013). Applicability of different hydraulic parameters to describe soil detachment in eroding rills.. PLoS ONE. 8. 1-11
  • YU, Y.,LOISKANDL, W.,KAUL, H.-P.,HIMMELBAUER, M.,WEI, W.,CHEN, L.,BODNER, G.. (2016). Estimation of runoff mitigation by morphologically different cover crop root systems.. Journal of Hydrology. 538. 667
  • ZEMA, D. A.,DENISI, P.,TAGUAS RUIZ, E. V.,GÓMEZ, J. A.,BOMBINO, G.,FORTUGNO, D.. (2015). Evaluation of Surface Runoff Prediction by AnnAGNPS Model in a Large Mediterranean Watershed Co-vered by Olive Groves. Land Degradation & Development. 27. 811