Evaluación de la proliferación de células adiposas en andamios de fibrina y quitosan: Revisión sistemática

  1. Alfonso Rodríguez, Camilo Andrés
  2. González Colmenares, Gretel
  3. Dávila, Adriana
  4. Marín, Claudia
  5. Villamarín, Sandra
  6. Garzón, Hernán Santiago
  7. Alaminos, Miguel
Revista:
Actualidad médica

ISSN: 0365-7965

Año de publicación: 2020

Tomo: 105

Número: 811

Páginas: 209-220

Tipo: Artículo

DOI: 10.15568/AM.2020.811.REV02 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Actualidad médica

Resumen

Introducción: Actualmente las matrices son utilizadas para la regeneración de órganos y tejidos. Dentro de los polímeros naturales más usados están el quitosán y la fibrina. Estas matrices proporcionan un am- biente tridimensional, con características biome-cánicas adecuadas, las cuales permiten la proliferación, migración y diferenciación ce-lular. El objetivo del presente estudio fue realizar una revisión sistemática de aquellos trabajos científicos que tratan de “evaluar la capacidad de proliferación in vitro de célu-las madre adiposas sobre andamios de fibrina y quitosán”. Materiales y Métodos: Se realizó una búsqueda bibliográfica en las bases de datos PubMed, Proquest y Science direct, utilizando términos de búsqueda específicos, desde enero de 2006 hasta di-ciembre de 2019. Dos investigadores determinaron independientemente la elegibilidad de los estudios. Se rea- lizó la preselección de los artículos teniendo en cuenta los cri-terios de inclusión y exclusión. De los artículos seleccionados se extrajo información sobre morfología celular, comportamiento del cambio dimensional del polímero, aisla-miento y caracterización celular, crecimiento, viabilidad, tasa de super- vivencia y eva-luación /citotóxica de las células; cuando faltaron datos, se contactó con los autores de la publicación. Se tuvo en cuenta la descripción de los métodos para obtener datos de proliferación celular mediante pruebas metabólicas como: (MTT), (MTS), WST-1, LIVE-DEAD, microscopía electróni- ca de barrido, microscopia electrónica de transmisión o microscopia de fluorescencia. Se utilizó una lista de chequeo para la valoración de los ítems y se determinó el índice de concordancia para los dos investigadores. Resulta-dos: La búsqueda inicial arrojó 165 publicaciones, de los cuales se excluyeron 100 por no cumplir con los criterios de inclusión. Sesenta y cinco se revisaron a texto completo, 58 fueron excluidos por encontrarse duplicados, presentar combinación de quitosán y fibrina con otros compuestos o por no encontrarse toda la información para la evalua-ción de la rigurosidad me - todológica. Finalmente, siete artículos fueron seleccionados y se sometieron a la evaluación metodológica. Conclusión: Los estudios seleccionados demuestran las ventajas biológicas y mecánicas de los biomateriales de fibrina y quito-sán y su capacidad para estimular la proliferación celular. Estos biomateriales podrían ser considerados como opciones para ser utilizados como matrices en pro- tocolos de ingeniería tisular y medicina regenerativa. Futuras investigaciones sobre evaluación de la proliferación celular sobre cualquier biomaterial deben estar direccionadas en plan-tear rigurosa metodología que permita la obtención de resultados fiables.

Referencias bibliográficas

  • Albanna MZ, Bou-Akl TH, Walters HL, Matthew HWT. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater. 2012; 5(1):171–80. DOI: 10.1016/j.jmbbm.2011.08.021
  • Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004; 8:301–16. DOI: 10.1111/ j.1582-4934.2004.tb00320.x
  • Bhat S, Kumar A. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng. 2012; 114(6):663–70. DOI: 10.1016/j.jbiosc.2012.07.005
  • Bodek KH, Nowak KM, Kozakiewicz M, Bodek A, Michalska M. Evaluation of Microcrystalline Chitosan and Fibrin Membranes as Platelet-Derived Growth Factor-BB Carriers with Amoxicillin. Int J Polym Sci. 2015; 2015. DOI: 10.1186/s13065-019-0574-y
  • Breitbart AS, Mason JM, Urmacher C, Barcia M, Grant RT, Pergolizzi RG, et al. Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblast transduced retrovirally with the PDGF-B gene. Ann Plast Surg. 1999; 43(6):632-9. Disponible en: https://pubmed. ncbi.nlm.nih.gov/10597824/
  • Chun HJ, Kim GW, Kim CH. Fabrication of porous chitosan scaffold in order to improve biocompatibility. J Phys Chem Solids. 2008; 69(5–6):1573–6. DOI: 10.1080/09205063.2014.979386
  • Chung E, Nam SY, Ricles LM, Emelianov SY, Suggs LJ. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int J Nanomed. 2013 Jan 17; 8:325–36. DOI: 10.2147/IJN.S36711
  • Chung E, Rytlewski JA, Merchant AG, Dhada KS, Lewis EW, Suggs LJ. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomater. 2015; 17:78–88. DOI: 10.1016/j.actbio.2015.01.012
  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5’, 6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzim idazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993; 197(1):40–5. DOI: 10.1006/bbrc.1993.2438
  • De La Puente P, Ludeña D, Fernández A, Aranda JL, Varela G, Iglesias J. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering. J Biomed Mater Res - Part A. 2011; 99 A(4):648–54. DOI: 10.1002/jbm.a.33231
  • Debnath T, Ghosh S, Potlapuvu US, Kona L, Kamaraju SR, Sarkar S, et al. Proliferation and differentiation potential of human adipose-derived stem cells grown on chitosan hydrogel. PLoS One. 2015; 10(3):1-14. DOI: 10.1371/journal.pone.0120803
  • Devi MP, Sekar M, Chamundeswari M, Moorthy A, Krithiga G, Murugan NS, et al. A novel wound dressing material- Fibrin-chitosan-sodium alginate composite sheet. Bull Mater Sci. 2012; 35(7):1157–63. DOI: 10.4238/gmr.15038431
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315–7. DOI: 10.1080/14653240600855905
  • Edwards RG. Stem cells today: A. Origin and potential of embryo stem cells. Reprod Biomed Online. 2004; 8(3):275–306. DOI: 10.1016/s1472-6483(10)60910-8
  • Flynn L, Prestwich GD, Semple JL, Woodhouse KA. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials. 2007; 28(26):3834–42. DOI: 10.1016/j.biomaterials.2007.05.002
  • Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, et al. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials. 2006; 27(30):5259–67. DOI: 10.1016/j.biomaterials.2006.05.044
  • Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym. 2015 Mar 15; 118:133–42. DOI: 10.1016/j.carbpol.2014.10.071
  • Girandon L, Kregar-Velikonja N, Božikov K, Barlič A. In vitro models for adipose tissue engineering with adipose-derived stem cells using different scaffolds of natural origin. Folia Biol (Czech Republic). 2011; 57(2):47–56. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21631961/
  • Gomathysankar S, Halim AS, Yaacob NS, Noor NM, Mohamed M. Compatibility of porous Chitosan Scaffold with the attachment and proliferation of human adipose-derived stem cells in vitro. J Stem Cells Regen Med. 2016; 12(2):79–86. DOI: 10.46582/jsrm.1202012
  • Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B. 2010; 11(7):524–30. DOI: 10.1631/jzus.B0900400
  • Hsieh WC, Liau JJ, Li YJ. Characterization and cell culture of a grafted chitosan scaffold for tissue engineering. Int J Polym Sci. 2015; 2015. https://doi.org/10.1155/2015/935305
  • Iyer P, Walker KJ, Madihally S V. Increased matrix synthesis by fibroblasts with decreased proliferation on synthetic chitosan-gelatin porous structures. Biotechnol Bioeng. 2012 May; 109(5):1314–25. DOI: 10.1002/bit.24396
  • Jackson WM, Nesti LJ, Tuan RS. Concise Review: Clinical Translation of Wound Healing Therapies Based on Mesenchymal Stem Cells. Stem Cells Transl Med. 2012; 1(1):44–50. DOI: 10.5966/sctm.2011-0024
  • Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 2011; 7(4):1653–64. DOI: 10.1016/j.actbio.2010.11.043
  • Katalinich M. Characterization of Chitosan Films for Cell Culture Applications. 2001; 1–196. https://digitalcommons. library.umaine.edu/etd/245
  • Kim MS, Park SJ, Gu BK, Kim CH. Inter-connecting pores of chitosan scaffold with basic fibroblast growth factor modulate biological activity on human mesenchymal stem cells. Carbohydr Polym. 2012 Mar 1; 87(4):2683–9. DOI: 10.1016/j.carbpol.2011.11.060
  • Kuci S, Kuci Z, Latifi-Pupovci H, Niethammer D, Handgretinger R, Schumm M, et al. Adult Stem Cells as an Alternative Source of Multipotential (Pluripotential) Cells in Regenerative Medicine. Curr Stem Cell Res Ther. 2009; 4(2):107–17. DOI: 10.2174/157488809788167427
  • Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials. 2009; 30(36):6867–78. DOI: 10.1016/j.biomaterials.2009.09.002
  • Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007; 85(7 A):1051–64. https://doi.org/10.1205/cherd06196
  • Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials. 2001; 22(4):331–6. DOI: 10.1016/ s0142-9612(00)00188-5
  • Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci. 2016; 83:155–65. DOI: 10.1016/j.ejps.2015.12.026
  • Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G, et al. Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy. 2014; 16(2):266–77. DOI: 10.1016/j.jcyt.2013.10.016
  • Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Sanchez-Quevedo MC, Campos A, et al. Average cell viability levels of human dental pulp stem cells: An accurate combinatorial index for quality control in tissue engineering. Cytotherapy. 2013; 15(4):507–18. https://doi.org/10.1016/j.jcyt.2012.11.017
  • Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, LeRoux MA. Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Transl Med. 2012; 1(2):142–9. DOI: 10.5966/sctm.2011-0018
  • Mohamed M, Gomanthysankar S, Mat Saad AZ, Noorsal K, Halim AS. Viability of adipose-derived stem cells (ASCs) on porous chitosan scaffold. Int J Pharm Sci Res. 2015; 6(9):3781–1787. https://doi.org/10.13040/IJPSR.0975-8232.6(9).3781-87
  • Oliveira AC, Rodríguez IÁ, Garzón I, Martín-Piedra MÁ, Alfonso-Rodríguez CA, García JM, et al. An early and late cytotoxicity evaluation of lidocaine on human oral mucosa fibroblasts. Exp Biol Med. 2014; 239(1):71–82. DOI: 10.1177/1535370213503274
  • Park H, Karajanagi S, Wolak K, Aanestad J, Daheron L, Kobler JB, et al. Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng - Part A. 2010; 16(2):535–43. DOI: 10.1089/ten.TEA.2009.0029
  • Pezeshki-Modaress M, Rajabi-Zeleti S, Zandi M, Mirzadeh H, Sodeifi N, Nekookar A, et al. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: In vitro and in vivo study. J Biomed Mater Res - Part A. 2014; 102(11):3908–17. DOI: 10.1002/jbm.a.35054
  • Pineda C, Londoño P. Adipose tissue derived mesenchymal stem cells, isolation and differentiation into osteogenic lineage. Rev. Ing Biomed. 2009; 3(5):58-65. Disponible en: http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S1909-97622009000100010
  • Saintigny G, Bonnard M, Damour O, Collombel C. Reconstruction of epidermis on a chitosan cross-linked collagen-GAG lattice: Effect of fibroblasts. Acta Derm Venereol. 1993; 73(3):175–80. DOI: 10.2340/0001555573175180
  • Sánchez-Muñoz I, Granados R, Holguín Holgado P, García-Vela JA, Casares C, Casares M. The use of adipose mesenchymal stem cells and human umbilical vascular endothelial cells on a fibrin matrix for endothelialized skin substitute. Tissue Eng - Part A. 2015; 21(1–2):214–23. DOI: 10.1089/ten.TEA.2013.0626
  • Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P. In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J. 2010 Mar 1; 46(3):428–40. https://doi.org/10.1021/bm061152a
  • Sheykhhasan M, Qomi RT, Kalhor N, Mehdizadeh M, Ghiasi M. Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cel. Indian J Orthop. 2015; 49(5):561–8. DOI: 10.4103/0019-5413.164043
  • Shimojo AAM, Perez AGM, Galdames SEM, Brissac ICDS, Santana MHA. Performance of PRP associated with porous chitosan as a composite scaffold for regenerative medicine. Sci World J. 2015; 2015:396131. DOI: 10.1155/2015/396131
  • Singaravelu S, Ramanathan G, Raja MD, Nagiah N, Padmapriya P, Kaveri K, et al. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application. Int J Biol Macromol. 2016; 86:810–9. DOI: 10.1016/j.ijbiomac.2016.02.021
  • Snima KS, Jayakumar R, Lakshmanan VK. In vitro and in vivo biological evaluation of o-carboxymethyl chitosan encapsulated metformin nanoparticles for pancreatic cancer therapy. Pharm Res. 2014; 31(12):3361–70. DOI: 10.1007/s11095-014-1425-0
  • Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials — Fabrication, characterization and in vivo analysis. Eur J Pharm Sci. 2017; 97:106– 12. DOI: 10.1016/j.ejps.2016.11.012
  • Wahl E, Fierro F, Peavy T, Hopfner U, Dye J, Machens H-G, et al. In vitro evaluation of scaffolds for the delivery of mesenchymal stem cells to wounds. BioMed Research International. 2015; 1-14.DOI: 10.1155/2015/108571
  • Wang W, He N, Feng C, Liu V, Zhang L, Wang F, et al. Human adipose-derived mesenchymal progenitor cells engraft into rabbit articular cartilage. Int J Mol Sci. 2015; 16(6):12076–91. DOI: 10.3390/ijms160612076
  • Wang ZH, Zhang J, Zhang Q, Gao Y, Yan J, Zhao XY, et al. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Genet Mol Res. 2016; 15(3). DOI: 10.4238/gmr.15038431
  • Zakhem E, Bitar K. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications. J Funct Biomater. 2015; 6(4):999–1011. DOI: 10.3390/jfb6040999
  • Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, et al. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl. 2007; 21(4):333–49. https://doi.org/10.1177/0885328206063853
  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct. 2008; 26(6):664–75. DOI: 10.1002/cbf.1488
  • Zhu Y, Liu T, Song K, Jiang B, Ma X, Cui Z. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. J Mater Sci Mater Med. 2009; 20(3):799–808. DOI: 10.1007/s10856-008-3636-6