Diseño y validación de una rúbrica para la evaluación de propuestas didácticas STEM (RubeSTEM).
- Aguilera, David 1
- García-Yeguas, Araceli 2
- Perales Palacios, Francisco Javier 2
- Vílchez-González, José Miguel 2
-
1
Universidad Internacional Isabel I de Castilla
info
-
2
Universidad de Granada
info
ISSN: 0213-8646, 2530-3791
Year of publication: 2022
Issue Title: Formación del Profesorado en Didáctica de las Ciencias Experimentales
Volume: 36
Issue: 97
Pages: 11-34
Type: Article
More publications in: RIFOP : Revista interuniversitaria de formación del profesorado: continuación de la antigua Revista de Escuelas Normales
Abstract
This article had two main objectives: (1) the design, development and validation of a rubric to evaluate the quality of didactic proposals with a STEM approach; and (2) its application in a sample of training teachers’ productions. To do this, we start from a theoretical framework that shows the antecedents and our positioning in the STEM issue, also reviewing other research related to the previous objectives. For this, a content and expert validation process was followed, applying the rubric thus obtained (RubeSTEM) to a sample of 26 group assignments of students who had followed a previous training period. The analysis of the results obtained includes the descriptive statistics of the evaluation of the proposals based on the RubeSTEM indicators and, through a qualitative analysis, a series of difficulties were extracted that presented a certain recurrence when the students faced the challenge of designing a didactic proposal based on the STEM approach. From there we outline some possible explanatory hypotheses for these difficulties. It is noteworthy that only a minimal part of the proposals meets acceptable requirements, finally proposing some initiatives that we believe are necessary to respond to these results and that focus mainly on teacher training (initial and continuous).
Bibliographic References
- Aguilera, D., Lupiáñez, J. L., Perales, F. J., y Vílchez, J. M. (2021). Objetivos de la educación STEM. Revisión sistemática. 11º Congreso Internacional sobre Investigación en la Enseñanza de las Ciencias. Lisboa.
- Aguilera, D., Lupiáñez, J. L., Vílchez, J. M., y Perales, F. J. (2021a). In search of a longawaited consensus for STEM education. A framework proposal. En Matthew N. Bowman (Ed.). Topics in Science Education (pp. 101-137). Nova Science Publishers (ebook).
- Aguilera, D., Lupiáñez, J. L., Vílchez, J. M., y Perales, F. J. (2021b). In search of a longawaited consensus on disciplinary integration in STEM education. Mathematics, 9, 597. https://doi.org/10.3390/math9060597
- Akerson, V. L., Burgess, A., Gerber, A., Guo, M., Khan, T. A., y Newman, S. (2018). Disentangling the meaning of STEM: implications for science education and science teacher education. Journal of Science Teacher Education, 29(1), 1-8. https://doi.org/10.1080/1046560X.2018.1435063
- Basham, J. D., Israel, M., y Maynard, K. (2010). An ecological model of STEM education: Operationalizing STEM for all. Journal of Special Education Technology, 25(3), 9- 19. https://doi.org/10.1177/016264341002500303
- Bertalanffy, L. V. (1976). General System Theory. Fondo de Cultura Económica. Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and engineering teacher, 70(1), 30-35.
- Chen, B., Bastedo, K., y Howard, W. (2018). Exploring design elements for online STEM courses: Active learning, engagement & assessment design. Online Learning, 22(2), 59- 75. https://doi.org/10.24059/olj.v22i2.1369
- Chu, H. E., Martin, S. N., y Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251-1266. https://doi.org/10.1007/s10763-018-9922-y
- Corlu, M. A., y Aydin, E. (2016). Evaluation of learning gains through integrated STEM projects. International Journal of Education in Mathematics, Science and Technology, 4(1), 20-29. https://doi.org/10.18404/ijemst.35021
- Dare, E. A., Ring-Whalen, E. A., y Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720. https://doi.org/10.1080/09500693.2019.1638531
- Domènech-Casal, J. (2019). STEM: Oportunidades y retos desde la Enseñanza de las Ciencias. Revista de Tecnología Educativa, 1(2), 154-168. https://doi.org/10.17345/ute.2019.2
- Domènech-Casal, J., Lope, S., y Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(2), 2203. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i2.2203
- Duit, R. (2007). Science Education Research Internationally: Conceptions, Research Methods, Domains of Research. Eurasia Journal of Mathematics, Science & Technology Education, 3(1), 3-15. https://doi.org/10.12973/ejmste/75369
- Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., y Parchmann, I. (2012). The model of educational reconstruction – a framework for improving teaching and learning science. En D. Jorde & J. Dillon (Eds.), Science Education Research and Practice in Europe: Retrospective and Prospective (pp. 13–37). Sense Publishers.
- English, L. D. (2016). Advancing mathematics education research within a STEM environment. En K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison & K. Fry (Eds.), Research in Mathematics Education in Australasia 2012–2015 (pp. 353– 371). Springer.
- Estévez-Mauriz, L., y Baelo, R. (2021). How to Evaluate the STEM Curriculum in Spain? Mathematics, 9, 236. https://doi.org/10.3390/math9030236
- García-Carmona, A. (2020). STEAM, ¿una nueva distracción para la enseñanza de la ciencia? Ápice. Revista de Educación Científica, 4(2), 35-50. https://doi.org/10.17979/arec.2020.4.2.6533
- Gresnigt, R., Taconis, R., Van Keulen, H., Gravemeijer, K., y Baartman, L. (2014). Promoting science and technology in primary education: a review of integrated curricula. Studies in Science Education, 50(1), 47-84. https://doi.org/10.1080/03057267.2013.877694
- Johnson, D. W., Johnson, R. T., y Holubec, E. J. (1999). El aprendizaje cooperativo en el aula. Paidós.
- Kim, P. W. (2016). The Wheel Model of STEAM Education Based on Traditional Korean Scientific Contents. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2353-2371. https://doi.org/10.12973/eurasia.2016.1263a
- Lesseig, K., Nelson, T. H., Slavit, D., y Seidel, R. A. (2016). Supporting Middle School Teachers’ Implementation of STEM Design Challenges. School Science and Mathematics, 116(4), 177-188. https://doi.org/10.1111/ssm.12172
- Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., y Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799– 822. https://doi.org/10.1002/sce.21522
- Ortiz-Revilla, J., Sanz-Camarero, R., y Greca, I. M. (2021). Una mirada crítica a los modelos teóricos sobre educación STEAM integrada. Revista Iberoamericana de Educación, 87(2), 13-33. https://doi.org/10.35362/rie8724634
- Pérez-Torres, M., Couso, D., y Márquez, C. (2021). ¿Cómo diseñar un buen proyecto STEM? Identificación de tensiones en la co-construcción de una rúbrica para su mejora. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1301. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1301
- Quigley, C. F., Herro, D., y Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1-2), 1-12. https://doi.org/10.1111/ssm.12201
- Shah, A. M., Wylie, C., Gitomer, D., y Noam, G. (2018). Improving STEM program quality in out-of-school-time: Tool development and validation. Science Education, 102, 238–259. https://doi.org/10.1002/sce.21327
- Toma, R. B., y García-Carmona, A. (2021). "De STEM nos gusta todo menos STEM": análisis crítico de una tendencia educativa de moda. Enseñanza de las Ciencias, 39(1), 65-80. https://doi.org/10.5565/rev/ensciencias.3093
- Toma, R. B., y Retana-Alvarado, D. A. (2021). Mejora de las concepciones de maestros en formación de la educación STEM. Revista Iberoamericana de Educación, 87(1), 15-33. https://doi.org/10.35362/rie8714538
- Trevallion, D., y Trevallion, T. (2020). STEM: Design, Implement and Evaluate. International Journal of Innovation, Creativity and Change, 14(8), 1-29.
- Tsai, H. Y., Chung, C. C., y Lou, S. J. (2018). Construction and development of iSTEM learning model. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 15-32. https://doi.org/10.12973/ejmste/78019
- Williams, J. (2011). STEM Education: Proceed with caution. Design and Technology Education: An International Journal, 16(1), 26-35.
- Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and engineering teacher, 70(1), 30-35.