What are the main factors driving behind the MENA countries current account deficit? A panel logit approach analysis

  1. Mohammed Seghir 1
  2. Salah Eddine Sari Hassoun 2
  3. Jorge Chica-Olmo 3
  4. Mehmet Sarac 4
  1. 1 University of Mascara (Algeria)
  2. 2 University of Tlemcen (Algeria)
  3. 3 University of Granada (Spain)
  4. 4 Istanbul University (Turkey)
Journal:
Revista de métodos cuantitativos para la economía y la empresa

ISSN: 1886-516X

Year of publication: 2022

Volume: 33

Pages: 134-153

Type: Article

DOI: 10.46661/REVMETODOSCUANTECONEMPRESA.4473 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de métodos cuantitativos para la economía y la empresa

Sustainable development goals

Abstract

El déficit sostenido de la cuenta corriente en cualquier país tiene una implicación importante para la política. Si continúa, sugiere que el régimen no debería tener motivación para evitar o disminuir su deuda internacional. En este artículo, probamos empíricamente la relación entre el déficit de cuenta corriente y las diferentes variables macroeconómicas mediante el modelo de panel Logit. Por lo tanto, nos centramos en los países MENA durante los años 1980-2017. Construimos un modelo econométrico para analizar la contribución del PIB real, la tasa de desempleo (UR), el índice de precios al consumidor (IPC), la tasa de crecimiento de las exportaciones (EGR), la tasa de crecimiento de las importaciones (IGR), el gasto público (PE) y la tasa de comercio exterior (FTR) sobre el déficit de cuenta corriente (CAD). Establecimos que solo las siguientes variables exógenas: PIB, UR, PE y FTR, tienen un efecto positivo y significativo en el déficit de cuenta corriente. Este resultado puede ayudar a los gobiernos a identificar el mejor momento para las estrategias de inversión y negocios al observar la evolución del desempeño de las industrias de mayor jerarquía temporal.

Bibliographic References

  • Abbes, S. M., Mostéfa, B., Seghir, G.M., & Zakarya, G.Y. (2015). Causal Interactions Between FDI and Economic Growth: Evidence from Dynamic Panel Co-Integration. Procedia Economics and Finance, 23, 276-290.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. En Springer Series in Statistics (pp. 199-213). New York: Springer New York.
  • Akaike, H. (1977). On entropy maximization principle. En P.R. Krishnaiah (Ed.), Applications of Statistics (pp. 27-41). North-Holland, Amsterdam.
  • Al-Jundi, S.A., & Guellil, M.S. (2018). Causality between economic growth and investment in the United Arab Emirates. International Journal of Economics and Business Research, 15(4), 524-540.
  • Allison, P. D. (2009). Fixed Effects Regression Models. London, UK: Newbury Park, CA.
  • Van Wijnbergen, S. (1984). TheDutch Disease': a disease after all? The Economic Journal, 94(373), 41-55.
  • Arghyrou, M.G., & Chortareas, G. (2008). Current account imbalances and real exchange rates in the euro area. Review of International Economics, 16(4), 747-764.
  • Barrell, R., Davis, E.P., Karim, D., & Liadze, I. (2010). The Impact of Global Imbalances: Does the Current Account Balance help to Predict Banking Crises in OECD Countries. National Institute of Economic and Social Research (NIESR) Discussion Papers, 351. UK.
  • Belke, A., & Dreger, C. (2013). Current account imbalances in the euro area: Does catching up explain the development? Current account imbalances in the euro area. Review of International Economics, 21(1), 6-17.
  • Bera, A.K., Jarque, C.M., & Lee, L.-F. (1984). Testing the normality assumption in limited dependent variable models. International Economic Review, 25(3), 563-578.
  • Berti, K., Salto, M., & Lequien, M. (2012). An Early Detection Index of Fiscal Stress for EU Countries. European Commission Economic Papers, (Nº. 475). Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  • Blanchard, O.J., & Giavazzi, F. (2002). Current account deficits in the euro area. The end of the Feldstein horioka puzzle? Brookings papers on economic activity, 2002(2), 147-209.
  • Borio, C., & Lowe, P. (2002). Asset Prices, Financial and Monetary Stability: Exploring the Nexus. Bank for International Settlements. Working Paper Series, 114, 1-47.
  • Breslow, N.E., & Day, N.E. (1980). Statistical methods in cancer research. Volume I - The analysis of case-control studies. IARC Scientific Publications, 32, 5-338.
  • Breusch, T.S., & Pagan, A.R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Bucevska, V. (2011). An Analysis of Financial Crisis by an Early Warning System Model: The Case of the EU Candidate Countries. Business and Economics Horizons, January, 13-26.
  • Calderon, C.A., Chong, A., & Loayza, N. V. (2000). Determinants of current account deficits in developing countries. Policy Research Working Paper, N. 2398. World Bank, Washington, DC. World Bank.
  • Campa, J.M., & Gavilan, A. (2011). Current accounts in the euro area: An intertemporal approach. Journal of International Money and Finance, 30(1), 205-228.
  • Cavdar, S.C., & Aydin, A.D. (2015a). A different perspective for current account deficit issue on some OECD member countries: A binary panel logit approach. Research in World Economy, 6(3), 14-20.
  • Cavdar, S.C., & Aydin, A.D. (2015b). Understanding the factors behind current account deficit problem: A panel logit approach on 16 OECD member countries. Procedia Economics and Finance, 30, 187-194.
  • Chamberlain, G. (1980). Analysis of Covariance with Qualitative Data. The Review of Economic Studies, 47(1), 225-232.
  • Chekouri, S.M., & Benbouziane, M. (2017). Oil rents and institutional quality: empirical evidence from Algeria. Topics in Middle Eastern and African Economies, 19(2), 1-31.
  • Collett, D. (2003). Modelling binary data, second edition (2ª ed.). Filadelfia, PA, Estados Unidos de América: Chapman & Hall/CRC.
  • Comelli, F., & FComelli@imf.org. (2013). Comparing parametric and non-parametric early warning systems for currency crises in emerging market economies. IMF Working Papers, 13(134), 1-10.
  • Corden, W. M. (1984). Booming sector and dutch disease economics: Survey and consolidation. Oxford Economic Papers, 36(3), 359-380.
  • Corden, W.M., & Neary, J.P. (1982). Booming sector and DE-industrialisation in a small open economy. Economic Journal, 92(368), 825-833.
  • Demirgüç-Kunt, A., Detragiache, E., ADemirgüç-Kunt@imf.org, & EDetragiache@imf.org. (1998). The determinants of banking crises: Evidence from developing and developed countries. IMF Working Papers, 97(106), 81-109.
  • Doornik, J.A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 927-939.
  • Eichengreen, B., Rose, A., & Wyplosz, C. (1994). Speculative Attacks on Pegged Exchange Rates: An Empirical Exploration with Special Reference to The European Monetary System. NBER Working Paper, 1-49.
  • Eichengreen, B., Rose, A., & Wyplosz, C. (1996). Contagious currency crises: First tests. The Scandinavian Journal of Economics, 98(4), 463-484.
  • Eita, J.H., Manuel, V., & Naimhwaka, E. (2018). Macroeconomic variables and current account balance in Namibia. Munich Personal RePEc Archive (MPRA) Paper Nº. 88818, 1-29.
  • Ganioglu, A. (2013). Rapid Credit Growth and Current Account Deficit as the Leading Determinants of Financial Crises. Economics, 1-26.
  • Gerni, C., Selcuk, E., & Deger, K.M. (2005). Erken Uyarı Sistemleri Yoluyla Türkiye’deki Ekonomik Krizlerin Analizi (The Analysis of Economic Crisis in Turkey via Early Warning Systems). Ekonometri ve İstatistik Dergisi, 2, 39-62.
  • Greene, W. H. (2012). Econometric Analysis. New York: Prentice Hall. US.
  • Gumusoglu, N.K., & Alcin, S. (2019). The Impact of Capital Flows on Current Account Deficit for Turkey. Journal of Life Economics, 6(1), 21-34.
  • Hamerle, A., & Ronning, G. (1995). Panel Analysis for Qualitative Variables. En Handbook of Statistical Modeling for the Social and Behavioral Sciences (pp. 401-451). Boston, MA: Springer US.
  • Hannan, E.J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, 41(2), 190-195.
  • Harberger, A.C. (1950). Currency depreciation, income, and the balance of trade. The Journal of Political Economy, 58(1), 47-60.
  • Hausman, J.A. (1978). Specification Tests in Econometrics. Econometrica: Journal of the Econometric Society, 46(6), 125-1271.
  • Henze, N., & Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics: theory and methods, 19(10), 3595-3617.
  • Hosmer, D.W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression: Hosmer/applied logistic regression (3ª. ed.). Hoboken, NJ, US: Wiley-Blackwell.
  • Kabadayi, B., & Celik, A.A. (2015). Determinant of Sovereign Ratings in Emerging Countries: A Qualitative, Dependent Variable Panel Data Analysis. International Journal of Economics and Financial Issues, 5(3), 656-662.
  • Kaminsky, G., Lizondo, S., & Reinhart, C. M. (1998). Leading indicators of currency crises. Staff papers - International Monetary Fund. International Monetary Fund, 45(1), 1-48.
  • Laursen, S., & Metzler, L.A. (1950). Flexible exchange rates and the theory of employment. The Review of Economics and Statistics, 32(4), 281-299.
  • Lestano, J.J., & Kuper, H.G. (2003). Indicators of Financial Crises Do Work! An Early-warning System for Six Asian Countries. CCSOWorking Paper, 13, 1-39.
  • Long, J.S., & Freese, J. (2005). Regression Models for Categorical Dependent Variables Using Stata. Vol.7 (pp. 1-527). Texas: Stata Press.
  • Magdalena, S. (2010). Explaining Odds Ration. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 19(3), 227-229.
  • Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530.
  • McCullagh, P. (1992). Introduction to Nelder and Wedderburn (1972) generalized linear models. En Springer Series in Statistics (pp. 543-546). New York: Springer New York.
  • Mccullagh, P., & Nelder, J.A. (1972). Generalized Linear Models. Generalized Linear Models. Monographs on Statistics and Applied Probability, 37-45.
  • Mcfadden, D.L. (1974). Conditional logit analysis of qualitative choice behavior. En P. Zarembka (Ed.), Frontiers in Econometrics (pp. 105-142). New York: Academic Press.
  • Milesi-Ferretti, G. M. (1996). Current account sustainability - selected East Asian and Latin American experiences. Washington D.C., DC, US: International Monetary Fund.
  • Nart, K.S., & Kisla, C.A. (2009). The Determinants of Currency Crises: A Panel Data Analysis. Middle Eastern Finance and Economics, 5, 107-116.
  • Neary, P., & Van Wijnbergen, S. (1986). Natural resources and the macroeconomy. London, UK: Blackwell.
  • Özdamar, G. (2016). A Survey on the Factors Affecting Current Account Balance of Turkey: Evidence from ARDL-Bounds Testing Approach. The Journal of International Social Research, 9(43), 2073-2082.
  • Pesaran, H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. University of Cambridge (Vol. 435). Working Paper.
  • Sachs, J.D., & Warner, A.M. (1997). Natural resource abundance and economic growth (Working Paper Series WP 5398). Cambridge: NBER.
  • Sachs, J.D., Tornell, A., Velasco, A., Calvo, G.A., & Cooper, R.N. (1997). Financial crises in emerging markets: The lessons from 1995. Brookings papers on economic activity, Working Paper, 5576.
  • Schmitz, B., & von Hagen, J. (2011). Current account imbalances and financial integration in the euro area. Journal of International Money and Finance, 30(8), 1676-1695.
  • Schmitz, P.I.M., Breslow, N.E., & Day, N.E. (1981). Statistical methods in cancer research. Vol. 1: The analysis of case-control studies. Biometrics, 37(4), 866-867.
  • Schnabl, G., & Wollmershaeuser, T. (2013). Fiscal divergence and current account imbalances in Europe. SSRN Electronic Journal.
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of statistics, 6(2), 461-464.
  • Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215-216.
  • Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality (complete sample). Biometrika, 52(3-4), 591-611.
  • Singh, T.R. (2011). Ordered Probit model of Early Warning System for Predicting Financial Crisis in India. A chapter. En Proceedings of the IFC Conference on "Initiatives to address data gaps revealed by the financial crisis” (Vol. 34, pp. 185-201). Basel.
  • Zemanek, H., Belke, A., & Schnabl, G. (2010). Current account balances and structural adjustment in the euro area. International Economics and Economic Policy, 7(1), 83-127.