Free-free resonance method for the mechanical characterization of carbonate rocks used as building stones

  1. F. Ávila
  2. E. Puertas
  3. J.M. Azañón
  4. R. Gallego
Aldizkaria:
Materiales de construcción

ISSN: 0465-2746

Argitalpen urtea: 2022

Alea: 72

Zenbakia: 345

Mota: Artikulua

DOI: 10.3989/MC.2022.03421 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Materiales de construcción

Garapen Iraunkorreko Helburuak

Laburpena

Nondestructive testing techniques have attracted growing interest in the last few years due to their ability to assess material properties without damaging the specimens. The free-free resonance method is a nondestructive testing technique based on the analysis of the natural frequencies of a sample. This study presents and discusses the applicability of this technique, traditionally used on soils, for the mechanical characterization of rocks. With this aim, the free-free resonance method is used to obtain the dynamic elastic modulus and shear modulus of four carbonate rocks that have been widely used as construction materials in southern Spain. The results from the nondestructive evaluation of dry and saturated rocks, in combination with petrographic characterization and uniaxial compression tests, make it possible to assess the existing relationships between the mechanical properties of carbonate rocks and to evaluate the impact of porosity and moisture content on their mechanical behavior.

Finantzaketari buruzko informazioa

Erreferentzia bibliografikoak

  • Yang, Y.; Zhan, B.; Wang, J.; Zhang, Y. (2020) Nondestructive assessment of the compressive strength of concrete with high volume slag. Mater. Charact. 162, 110223.
  • Işık, N.; Halifeoğlu, F.M.; İpek, S. (2020) Nondestructive testing techniques to evaluate the structural damage of historical city walls. Construc. Build. Mat. 253, 119228.
  • Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. (2013) Non-destructive techniques as a tool for the protection of built cultural heritage. Construc. Build. Mat. 48, 1222-1239.
  • McCann, D.M.; Forde, M.C. (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34 [2], 71-84.
  • Kashif Ur Rehman, S.; Ibrahim, Z.; Memon, S.A.; Jameel, M. (2016) Nondestructive test methods for concrete bridges: A review. Construc. Build. Mat. 107, 58-86.
  • Wahab, A.; Aziz, M.M.A.; Sam, A.R.M.; You, K.Y.; Bhatti, A.Q.; Kassim, K.A. (2019) Review on microwave nondestructive testing techniques and its applications in concrete technology. Construc. Build. Mat. 209, 135-146.
  • Gomez-Heras, M.; Benavente, D.; Pla, C.; Martinez-Martinez, J.; Fort, R.; Brotons, V. (2020) Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Construc. Build. Mat. 261, 119996.
  • Forestieri, G.; Freire-Lista, D.M.; De Francesco, A.M.; Pontea, M.; Fort, R. (2017) Strength anisotropy in building granites. Int. J. Archit. Herit. 11 [8], 1153-1165.
  • Karaman, K.; Kesimal, A. (2015) Correlation of schmidt rebound hardness with uniaxial compressive strength and p-wave velocity of rock materials. Arab. J. Sci. Eng. 40 [7], 1897-1906.
  • Kurtulus, C.; CakIr, S.; Yoğurtcuoğlu, A.C. (2016) Ultrasound study of limestone rock physical and mechanical properties. Soil Mech. Found. Eng. 52 [6], 348-354.
  • Najibi, A.R.; Ghafoori, M.; Lashkaripour, G.R.; Asef, M.R. (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J. Pet. Sci. Eng. 126, 78-82.
  • Freire-Lista, D.M.; Fort, R. (2017) Exfoliation microcracks in building granite. Implications for anisotropy. Eng. Geol. 220, 85-93.
  • Quagliarini, E.; Revel, G.M.; Lenci, S.; Seri, E.; Cavuto, A.; Pandarese, G. (2014) Historical plasters on light thin vaults: State of conservation assessment by a Hybrid ultrasonic method. J. Cult. Herit. 15 [2], 104-111.
  • Yalçıner, C.Ç.; Büyüksaraç, A.; Kurban, Y.C. (2019) Non-destructive damage analysis in Kariye (Chora) Museum as a cultural heritage building. J. Appl. Geophys. 171, 103874.
  • Breysse, D.; Klysz, G.; Dérobert, X.; Sirieix, C.; Lataste, J.F. (2008) How to combine several non-destructive techniques for a better assessment of concrete structures. Cem. Concr. Res. 38 [6], 783-793.
  • UNE-EN 14146:2004. Métodos de ensayo para piedra natural. Determinación del módulo de elasticidad dinámico (con la medida de la frecuencia de resonancia fundamental), (2004).
  • Schaeffer, K.; Bearce, R.; Wang, J. (2013) Dynamic modulus and damping ratio measurements from free-free resonance and fixed-free resonant column procedures. J. Geotech. Geoenviron. Eng. 139 [12], 2145-2155.
  • Guimond-Barrett, A.; Nauleau, E.; Le Kouby, A.; Pantet, A.; Reiffsteck, P.; Martineau, F. (2013) Free-free resonance testing of in situ deep mixed soils. Geotech. Test. J. 36 [2], 283-291.
  • Verástegui-Flores, R.D.; Di Emidio, G.; Bezuijen, A.; Vanwalleghem, J.; Kersemans, M. (2015) Evaluation of the free-free resonant frequency method to determine stiffness moduli of cement-treated soil. Soils Found. 55 [5], 943-950.
  • Sun, C.; Tang, G.; Zhao, J.; Zhao, L.; Wang, S. (2018) An enhanced broad-frequency-band apparatus for dynamic measurement of elastic moduli and Poisson’s ratio of rock samples. Rev. Sci. Instrum. 89, 064503.
  • Waqas, U.; Ahmed, M.F. (2020) Prediction modeling for the estimation of dynamic elastic young’s modulus of thermally treated sedimentary rocks using linear-nonlinear regression analysis, regularization, and ANFIS. Rock Mech. Rock Eng. 53 [12], 5411-5428.
  • Lin, Y.; Peng, L.; Lei, M.; Wang, X.; Cao, C. (2019) Predicting the mechanical properties of bimrocks with high rock block proportions based on resonance testing technology and damage theory. Appl. Sci. 9 [17], 3537.
  • Eiras, J.N.; Vu, Q.A.; Lott, M.; Payá, J.; Garnier, V.; Payan, C. (2016) Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity. Ultrasonics. 69, 29-37.
  • Spalvier, A.; Domenech, L.D.; Cetrangolo, G.; Popovics, J.S. (2020) Torsional vibration technique for the acoustoelastic characterization of concrete. Mater. Struct. 53, 7.
  • Arizzi, A.; Belfiore, C.M.; Cultrone, G.; Rodríguez-Navarro, C.; Sebastián-Pardo, E.; Triscari, M. (2007) Petro-chemical and physical investigations on the “Santa Pudia Calcarenite” (Andalusia, Spain): New hints for the prevention and conservation of calcarenitic building materials. Goldschmidt Conf. Abstr. A35. Retrieved from https://goldschmidtabstracts.info/2007/35.pdf.
  • Luque, A.; Cultrone, G.; Mosch, S.; Siegesmund, S.; Sebastian, E.; Leiss, B. (2010) Anisotropic behaviour of white macael marble used in the Alhambra of Granada (Spain). The role of thermohydric expansion in stone durability. Eng. Geol. 115 [3-4], 209-216.
  • Molina, E.; Benavente, D.; Sebastian, E.; Cultrone, G. (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng. Geol. 197, 67-81.
  • Urosevic, M.; Sebastián Pardo, E.; Ruiz-Agudo, E.; Cardell, C. (2011) Physical properties of carbonate rocks used as a modern and historic construction material in Eastern Andalusia, Spain. Mater. Construcc. 61 [301], 93-114.
  • Balanyá, J.C.; García-Dueñas, V. (1986) Grandes fallas de contracción y de extensión implicadas en el contacto entre los dominios de Alborán y Sudibérico en el arco de Gibraltar. Geogaceta. 1, 19-21.
  • López Sánchez-Vizcaóno, V.; Connolly, J.A.D.; Gómez-Pugnaire, M.T. (1997) Metamorphism and phase relations in carbonate rocks from the Nevado-Filábride Complex (Cordilleras Béticas, Spain): Application of the Ttn + Rt + Cal + Qtz + Gr buffer. Contrib. to Mineral. Petrol. 126 [3], 292-302.
  • Miras, A.; Vázquez, M.A.; Galán, E.; Apostolaki, C.; Marcopoulos, T. (2009) Sustainability criteria for the selection of marble to be used for restoration: application to the Alhambra Palace (Granada, Spain). In A. Gutiérrez García-M, P. Lapuente Mercadal, & I. Rodà de Llanza (Eds.) Interdisciplinary Studies on Ancient Stone: proceedings of the IX Association for the Study of Marble and Other Stones in Antiquity. (ASMOSIA) Conference (pp. 1-6). Instituto Catalán de Arqueología Clásica.
  • Navarro, R.; Pereira, D.; Cruz, A.S.; Carrillo, G. (2019) The Significance of “White Macael” marble since ancient times: characteristics of a candidate as global heritage stone resource. Geoheritage. 11, 113-123.
  • Vázquez, P.; Alonso, F.J.; Carrizo, L.; Molina, E.; Cultrone, G.; Blanco, M.; Zamora, I. (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Construc. Build. Mat. 41, 868-878.
  • García del Cura, M.A.; Sanz-Montero, E.; Benavente, D.; Martínez-Martínez, J.; Bernabéu, A. (2008) Sistemas travertínicos de Alhama de Almería: características petrográficas y petrofísicas. Geotemas. 10, 456-459.
  • UNE-EN 13755. Métodos de ensayo para piedra natural. Determinación de la absorción de agua a presión atmosférica, (2008).
  • UNE-EN 1926. Métodos de ensayo para la piedra natural. Determinación de la resistencia a la compresión uniaxial, (2007).
  • Demirdag, S.; Tufekci, K.; Kayacan, R.; Yavuz, H.; Altindag, R. (2010) Dynamic mechanical behavior of some carbonate rocks. Int. J. Rock Mech. Min. Sci. 47 [2], 307-312.
  • Martínez-Soto, F.; Puertas, E.; Gallego, R.; Suarez, F.J. (2018) Using spectral analysis of surface waves to characterize construction materials in built cultural heritage: the church of Saint Justo & Pastor. 6th Int. Conf. on Herit. Sustain. Develop., 2, 1407-1417. Retrieved from https://www.researchgate.net/publication/322065481.
  • Molina-Piernas, E. (2015). Influencia de la textura, del sistema poroso y del acabado superficial en la durabilidad de areniscas y travertino explotados en Andalucía y utilizados en construcción [Universidad de Granada]. Retrieved from http://hdl.handle.net/10481/40320.
  • Sarpün, I.H.; Özkan, V.; Tuncel, S. (2009) Ultrasonic determination of elastic modulus of marbles relation with porosity and CaO %. 10th Int. Conf. Slov. Soc. Non-Destructive Test. 119-125.
  • ASTM International. (2014) C215-14 standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. In Am. Soc. Test. Mater.
  • Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F.J. (2013) Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J. Geophys. Engineer. 10 [3], 035003.
  • Justo, J.; Castro, J. (2021) Mechanical properties of 4 rocks at different temperatures and fracture assessment using the strain energy density criterion. Geomech. Energy Environ. 25, 100212.
  • Rodríguez Gordillo, J.; Sáez Pérez, M.P. (2010) Performance of Spanish white Macael marble exposed to narrow- and medium-range temperature cycling. Mater. Construcc. 60 [297], 127-141.
  • Lindqvist, J.E.; Åkesson, U.; Malaga, K. (2007) Microstructure and functional properties of rock materials. Mater. Charact. 58 [11-12], 1183-1188.
  • Del Río, L.M.; López, F.; Calleja, B.; Tejado, J.J.; Mota, M.I.; González, I.; San Emeterio, J.L.; Ramos, A. (2007) Resonance-based acoustic technique applied to the determination of Young’s modulus in granites. 19th Int. Congr. Acoust. Retrieved from http://www.sea-acustica.es/WEB_ICA_07/fchrs/papers/ult-17-017.pdf.
  • Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 97 [1-2], 80-90.
  • Tuǧrul, A. (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 75 [3-4], 215-227.
  • Pappalardo, G.; Punturo, R.; Mineo, S.; Contrafatto, L. (2017) The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna. Eng. Geol. 221, 16-28.
  • Chang, C.; Zoback, M.D.; Khaksar, A. (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 51 [3-4], 223-237.
  • Gu, D.M.; Huang, D.; Zhang, W.G.; Gao, X.C.; Yang, C. (2020) A 2D DEM-based approach for modeling water-induced degradation of carbonate rock. Int. J. Rock Mech. Min. Sci. 126, 104188.
  • Vales, F.; Minh, D.; Gharbi, H.; Rejeb, A. (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl. Clay Sci. 26 [1-4], 197-207.
  • Van Den Abeele, K.E.A.; Carmeliet, J.; Johnson, P.A.; Zinszner, B. (2002) Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity. J. Geophys. Res. 107 [B6], 1-11.
  • Ciantia, M.O.; Castellanza, R.; di Prisco, C. (2015) Experimental study on the water-induced weakening of calcarenites. Rock Mech. Rock Eng. 48, 441-461.