Espectroscopia de Reflectancia de Fibra Óptica (FORS) de las principales canteras de rocas silíceas de Andalucía y su aplicación a la identificación de la procedencia de artefactos líticos tallados durante la Prehistoria

  1. García del Moral, Luis F. 1
  2. Morgado, Antonio 1
  3. Esquivel, Jose A. 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Complutum

ISSN: 1131-6993 1988-2327

Año de publicación: 2022

Volumen: 33

Número: 1

Páginas: 35-67

Tipo: Artículo

DOI: 10.5209/CMPL.80885 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Complutum

Resumen

La procedencia de los artefactos de sílex es muy importante en investigaciones arqueológicas, ya que permite conocer el desplazamiento de artefactos líticos, las redes de su intercambio, los patrones de movilidad, etc. Mediante Espectroscopia de Reflectancia de Fibra Óptica (FORS) se han caracterizado 16 de las principales canteras de sílex y otras rocas silíceas de Andalucía con signos evidentes de haber sido utilizados durante la Prehistoria reciente. La aplicación de métodos estadísticos de análisis multivariante (Análisis de Componentes Principales y Análisis de Clúster) a los datos obtenidos ha permitido diferenciar 58 espectrofacies que definen una colección espectral de los principales sílex de Andalucía. Estas espectrofacies pueden identificar el origen de los artefactos arqueológicos de sílex. La validez de este método se ha contrastado estudiando 15 puntas de flecha de la necrópolis megalítica de Gorafe. Los resultados indican que 5 de ellas pueden proceder de 4 de las canteras andaluzas de sílex y 10 parecen tener un origen diferente, pero 7 con relaciones muy estrechas entre varias de ellas. Estos resultados confirman que la espectroscopia de reflectancia y el análisis multivariante, proporcionan una herramienta muy útil para la identificación de la procedencia, la identificación y la clasificación de los sílex arqueológicos, así como proporcionar información sobre la diagénesis de los materiales silíceos desde los que fueron tallados.

Referencias bibliográficas

  • Bustillo, M. A.; Castañeda, N.; Capote, M.; Consuegra, S. Criado, C.; Díaz-Del-Río, P.; Orozco, T.; Pérez-Jiménez, J.L, y Terradas, X. (2009): Is the macroscopic classification of flint useful? A petroarchaeological anlysis and characterization of flint raw materials from the Iberian neolithic mine of Casa Montero. Archaeometry, 51 (2): 175-196.
  • http://dx.doi.org/10.1111/j.1475-4754.2008.00403.x
  • Capel Ferrón, C.; León-Reina, L.; Jorge-Villar, S.; Compaña, J.M.; Aranda, M.A.G.; López Navarrete, J.T.; Hernández, V.; Medianero, F.J.,; Ramos, J.; Weniger, G.- C.; Domínguez-Bella, S.; Linstaedter, J.; Cantalejo, P., Espejo, M. y Durán Valsero, J.J. (2015): Combined Raman spectroscopic and Rietveld analyses as a useful and nondestructive approach to studying flint raw materials at prehistoric archaeological sites. Archaeological and Anthropological Sciences, 7 (2) : 235-243. http://dx.doi.org/10.1007/s12520-014-0189-0
  • Chiari, R.; Ferrari, M.C.; Sgavetti, M.A. (1994): Spectral classification of the rocks as a preliminary procedure for the lithologic interpretation of remote sensing multispectral data”. Proceedings Volume 2320, Geology from Space, Satellite Remote Sensing, 1994, Rome, Italy. https://doi.org/10.1117/12.197298.
  • Church, T. (1994): Lithic Resource Studies: A Source book for Archaeologists. Lithic Technology, Special Publication 3, UNIVERS, John Wiley and Sons, New York.
  • Ciberto, E.; Spoto, G. (2000): Modern Analytical Methods in Art and Archaeology. John Wiley and Sons, New York.
  • Clark, R. N. (1999): Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.), John Wiley and Sons, New York: 3- 58.
  • Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze G.A.; Vergo N. (1990): High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research 95: 12653-12680. http://dx.doi.org/10.1029/JB095iB08p12653
  • Craig, A.P.; Franca, A.S.; Irudayaraj, J. (2013): Pattern Recognition Applied to Spectroscopy: Conventional Methods and Future Directions. Pattern Recognition, (D.B. Vincent, ed.), Nova Science Publishers, Hauppauge, Nueva York: 1-45.
  • Delibes de Castro, G.; Herrán Martínez, J. I. (2007): La Prehistoria, Colección Biblioteca Básica de Valladolid, Diputación Provincial de Valladolid, Valladolid.
  • Domínguez-Bella, S.; Morata, D. (1995): Aplicación de las técnicas mineralógicas y petrológicas a la arqueometría. Estudio de materiales del dolmen de Alberite (Villamartín, Cádiz). Zephyrus XLVIII: 129-142.
  • Domínguez-Bella, S. (2008): Las materias primas minerales en los asentamientos de cazadores recolectores en la banda atlántica de Cádiz durante el pleistoceno superior. Geoarqueología, análisis mineralógico y petrológico, La ocupación prehistórica de la Campiña Litoral y Banda Atlántica de Cádiz, Sevilla, (J. Ramos, coord.), Arqueología Monografías, Junta de Andalucía: 127-145.
  • Esbensen, K.H.; Swarbrick, B. (2018): Multivariate Data Analysis. 6th ed., CAMO software AS, Oslo, Norway.
  • Fernández Eraso, J.; García-Rojas, M. (2013): Tipología Analítica. Métodos y técnicas de análisis y estudio en Arqueología Prehistórica. De lo técnico a la reconstrucción de los grupos humanos. (M. García-Díez, L. Zapata, eds.), Universidad del País Vasco: 470- 497.
  • García Sánchez, M.; Spahni, J.C. (1959). Sepulcros megalíticos de la región de Gorafe (Granada), Archivo Prehistórico Levantino, VIII: 43-123.
  • Góngora y Martínez, M. (1868): Antigüedades Prehistóricas de Andalucía, Imprenta a cargo de C. Moro, Madrid.
  • Hauff, P.L. (1993): Specmin Mineral Identification System and Spectral Library, vols. 1 y 2: Arvada, Colorado, Spectral International, USA.
  • Hernández, V.; Jorge-Villar, S.; Capel Ferrón, C.; Medianero, F.J.; Ramos, J.; Weniger, G.-C.; Domínguez-Bella, S.; Linstaedter, J.; Cantalejo, P.; Espejo, M.; Durán Valsero, J. J. (2012). Raman spectroscopy analysis of Palaeolithic industry from Guadalteba terrace river, Campillos (Guadalteba County, Southern of Iberian Peninsula). Journal of Raman Spectroscopy 43: 1651–1657. http://dx.doi.org/10.1002/jrs.4104
  • Hubbard, M.J.; Waugh, D.A.; Ortiz, J.D. (2005): Provenance determination of archaeological flints byVIS/NIR diffuse reflectance spectrometry. The Compass 78: 119–129.
  • Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.¸ Lowers, H.A.; Driscoll, R.L; Klein, A.J. (2017): USGS Spectral Library Version 7.U.S. Geological Survey Data Series 1035, 61 p.
  • Linares, J.A.; Nocete, F.; Sáez, R. (1998): Aprovisionamiento compartido versus aprovisionamiento restringido: los casos de las canteras del III milenio a.n.e. del Andévalo (Huelva), Rubricatum 2: 177-184.
  • Longhi, I.; Sgavetti, R.; Chiari, R. Mazzoli, C. (2001): Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5 μ m interval: a tool for hyperspectral data interpretation. International Journal of Remote Sensing 22: 3763–3782. http://dx.doi.org/10.1080/01431160010006980
  • Lozano, J.A.; Morgado, A.; Puga, E.; Martín-Algarra, A. (2010). Explotaciones del sílex tipo “Turón” (Málaga, España): localización y caracterización petrológica y geoquímica. Geogaceta: 163-166.
  • Luedtke, B.E. (1979): The Identification of Sources of Flint Artifacts. American Antiquity 44: 744-757.
  • Luedtke, B.E. (1992): An Archaeologist’s Guide to Flint and Flint Archaeological Research Tools. Los Angeles: Institute of Archaeology, University of California.
  • Mitjavila, J.; Martí, J.; Soriano, C. (1997): Magmatic evolution and tectonic setting of the Iberian Pyrite Belt volcanism. Journal Petrology, 38, 727-755.
  • Morgado, A.; Lozano, J.A. (2014): Objetos de sílex, Marcadores litológicos de la Circulación. Geoarqueología de la Producción laminar Especializada del sur de Iberia (c. VI-V mil. Cal. BP). Movilidad, contacto y cambio, 2º Congreso de Prehistoria de Andalucía. Junta de Andalucia, Sevilla, 121-136.
  • Morgado, A. ; Pelegrin, J. ; Martinez Fernández, G. ; Afonso Marrero, J.A. (2008): La production des grandes lames dans la Péninsule Ibérique (IVe et IIIe millénaires), Les industries lithiques taillées des IVe et IIIe millénaires en Europe occidentale. (M.-H Dias-Meirinho, V Léa, K. Gernigon, P. Fouéré, F. Briois y M. Bailly, eds.), British Archaeological Reports, International Series 1884, Archaeopress, Oxford, 309-330.
  • Morgado, A.; Lozano, J.A.; Pelegrin, J. (2011): Las explotaciones prehistóricas del sílex de la Formación Milanos (Granada, España). Menga, Revista de Prehistoria de Andalucía 2: 135-155 y 261-269.
  • Navazo, M.; Colina, A.; Domínguez-Bella, S.; Benito, A. (2008): Raw stone material supply for Upper Pleistocene settlements in Sierra de Atapuerca (Burgos, Spain): Flint characterization using petrographic and geochemical techniques. Journal of Archaeological Science 35: 1961-1973. http://dx.doi.org/10.1016/j.jas.2007.12.009
  • Newlander, K.; Lin, Y. (2017): Integrating visual and chemical data to source flint artifacts in the North American Great Basin. Journal of Archaeological Science-Reports 11: 578-591. http://dx.doi.org/10.1016/j.jasrep.2016.12.037
  • Nogales-Bueno, J.; Hernández-Hierro J.M.; Rodríguez-Pulido, F.J.; Heredia, F.J. (2014): Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Food Chemistry 152: 586–591. http://dx.doi.org/10.1016/j.foodchem.2013.12.030
  • Ortega, D.; Terradas, X.; Roqué, C.; Ibáñez, J.; Beamud, E.; Larrasoaña, J.C. (2016): Caracterización petrológica del sílex de la Formación Calizas de Montmaneu (Sector oriental de la Cuenca del Ebro). Geogaceta 60: 95-98.
  • Olivares, M.; Tarriño, A.; Murelaga, X.; Baceta, J. I.; Castro, K.; Etxebarría, N. (2009): Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73: 492-497. https://doi.org/10.1016/j.saa.2008.12.036
  • Parish, R.M. (2011): The Application of Visible/Near-Infrared Reflectance (VNIR) Spectroscopy to Flint: A Case Study from the Dover Quarry Sites, Tennessee. Geoarchaeology 26: 420–439. https://doi.org/10.1002/gea.20354.
  • Parish, R.M. (2016): Reflectance Spectroscopy as a Chert Sourcing Method. Archaeologia Polona 54: 115–128.
  • Percival J.B.; Bosman S.A.; Potter E.G.; Laudadio, A.B.; Abraham A.C.; Shiley D.A.; Sherry C. (2018): Customized Spectral Libraries for Effective Mineral Exploration: Mining National Mineral Collections. Clays and Clay Minerals. 66: 297–314. https://doi.org/10.1346/CCMN.2018.064103
  • Ray, J.H. (2007): Ozarks Chipped-stone Resources: A Guide to the Identification, Distribution, and Use of Flints and Other Siliceous Raw Materials. Special Publication No. 8. Missouri Archaeological Society, Springfield, MO.
  • Ritz, M.; Vaculíková, L.; Plevová, E. (2011): Application of infrared spectroscopy and chemometric methods to identification of selected minerals. Acta Geodynamica et Geomaterialia 8: 47–58.
  • Rodríguez-Tovar, F.; Morgado, A.; Lozano, J.A. (2010a): Using Ichnofossils to Characterize Chert Tools: A Preliminary Study from Southern Iberia. Geoarchaeology 25: 514-526. https://doi.org/10.1002/gea.20317
  • Rodríguez-Tovar, F.; Morgado, A.; Lozano, J.A. (2010b): Ichnological analysis: A non-destructive tool in archaeological research. Lethaia 43: 587-590.
  • Roldán, C.; Eixea, A.; Villaverde, V.; Murcia, S.; Prudêncio, M.I.; Dias, M.I.; Marques. R. (2016): Técnicas analíticas aplicadas al estudio de la composición y procedencia de sílex arqueológicos en la región central del mediterráneo español. digitAR 3: 23-30.
  • Schmidt, P.; Léa, V.; Sciau, P.H.; Fröhlich, F. (2013): Detecting and quantifying heat treatment of flint and other silica rocks: a new non-destructive method applied to heat-treated flint from the Neolithic Cassey culture, southern France. Archaeometry 55: 794–805. https://doi.org/10.1111/J.1475-4754.2012.00712.X
  • Steel, R.; Torrie, J. (1980). Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed., McGraw-Hill Inc., New York.
  • Tarriño, A.; Terradas, X. (2013): Materias primas líticas. Métodos y técnicas de análisis y estudio en arqueología prehistórica: De lo técnico a la reconstrucción de los grupos humanos, (M. García, L. Zapata, coords.), Universidad del País Vasco, Vitoria, 439-452,
  • Tarriño, A.; Olivares, M.; Etxebarria, N.; Baceta, J. I.; Larrasoaña, J. C.; Yusta, I.; Pizarro, J. L.; Cava, A.; Barandiarán, I.; Murelaga, X. (2008): El sílex de tipo “Urbasa. Caracterización petrológica y geoquímica de un marcador litológico en yacimientos arqueológicos del Suroeste europeo durante el Pleistoceno superior y Holoceno inicial. Geogaceta 23: 127-130.
  • Ten Bruggencate, R.E.; Milne, S. B.; Park, R. W.; Fayek, M.; Stenton, D. R. (2017): Combining flint provenance and least-cost pathway analyses to reconstruct Pre-Dorset and Dorset mobility on southern Baffin Island. Journal of Archaeological Science-Reports 14: 651-661. https://doi.org/10.1016/j.jasrep.2017.06.030
  • Thiry, M.; Fernandes, P.; Milnes, A.; Raynal, J-P. (2014): Driving forces for the weathering and alteration of silica in the regolith: Implications for studies of prehistoric flint tools. Earth-Science Reviews 136: 141–154. https://doi.org/10.1016/j.earscirev.2014.05.008.
  • Varmuza, K.; Karlovits, M.; Demuth, W. (2003): Spectral similarity versus structural similarity: infrared spectroscopy. Analytica Chimica Acta 490: 313–324. https://doi.org/10.1016/S0003-2670(03)00668-8
  • Willemse-Erix, D.F.M,; Scholtes-Timmerman, M.J.; Jachtenberg, J.W.; van Leeuwen, W.B.; Horst-Kreft, D.; Bakker Schut, T.C.; Deurenberg, R.H.; Puppels, G.J.; van Belkum, A.; Vos, M.C.; Maquelin, K. (2009). Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method. Journal of Clinical Microbiology 47: 652–659. https://doi.org/10.1128/JCM.01900-08.