Thirty years of research and development of Lagrangian buoys at the Institute of Marine Sciences

  1. Emilio García-Ladona 1
  2. Pere Fernandez 1
  3. Josep L. Pelegrí 1
  4. Pedro Elósegui 1
  5. Oriol Sánchez 1
  6. Jose Antonio Jiménez Madrid 1
  7. Fernando Pérez 1
  8. Joaquim Ballabrera 1
  9. Jordi Isern-Fontanet 1
  10. Jordi Salat 1
  11. Jordi Font 1
  1. 1 Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Passeig Marítim, 37-49, 08003 Barcelona, Spain.
Aldizkaria:
Scientia Marina
  1. Vaqué, Dolors (coord.)
  2. Pelegrí Llopart, José Luis (coord.)

ISSN: 0214-8358

Argitalpen urtea: 2016

Zenbakien izenburua: Planet Ocean

Alea: 80

Zenbakia: 1

Orrialdeak: 141-158

Mota: Artikulua

DOI: 10.3989/SCIMAR.04325.14A DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Scientia Marina

Garapen Iraunkorreko Helburuak

Laburpena

Since the mid-1980s, physical oceanographers at the Institute of Marine Sciences have been involved in the use of Lagrangian drifters as a complementary technology for their oceanographic research. As Lagrangian observations became more feasible, these researchers continued developing their own drifters in what was to be the seed of current technological activities at the Physical and Technological Oceanography Department. In this paper we overview the work done during the last 30 years with special focus on Lagrangian developments from the initial activities to the latest developments. In addition to basic oceanography research applications, Lagrangian technological developments include prototypes for measuring surface and subsurface ocean properties, for tracking purposes in search and rescue operations and pollution events, and for monitoring ice motion and thickness in the Arctic. The paper emphasizes original and unpublished technical aspects related to the latest developments.

Erreferentzia bibliografikoak

  • Abascal A., Castanedo S., Mendez F., et al. 2009. Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the Prestige Oil Spill. J. Coast. Res. 25: 80-90. http://dx.doi.org/10.2112/07-0849.1
  • Abbott M., Brink K., Booth C.R., et al. 1995. Scales of variability of bio-optical properties as observed from near-surface drifters. J. Geophys. Res. 100(C7): 13345-13367. http://dx.doi.org/10.1029/94JC02457
  • Benzohra M., Millot C. 1995. Hydrodynamics of an open sea Algerian eddy. Deep-Sea Res. Part I: Oceanographic Research Papers, 42: 1831-1847. http://dx.doi.org/10.1016/0967-0637(95)00046-9
  • Bitterman D., Hansen D. 1993. Evaluation of sea surface temperature measurements from drifting buoys. J. Atmos. Oceanic Technol. 10: 88-96. http://dx.doi.org/10.1175/1520-0426(1993)010<0088:EOSSTM>2.0.CO;2
  • Brion E., Gaillard F., de la Villeon L.P., et al. 2010. GLOSCAL: In-situ datasets and gridded fields for calibration and validation of SMOS. In: Proceedings of ESA-Living Planet Symposium. ESA publications. ESA SP-686. ISBN 978-92-9221-250-6
  • Camps A., Font J., Vall-llossera M., et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface l-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Gesosci. Remote Sens. 42(4): 804-823. http://dx.doi.org/10.1109/TGRS.2003.819444
  • Castanedo S., Medina R., Losada I., et al. 2006. The prestige oil spill in Cantabria (Bay of Biscay). Part I: Operational forecasting system for quick response, risk assessment and protection of natural resources. J. Coast. Res. 22: 1474-1489. http://dx.doi.org/10.2112/04-0364.1
  • Claret M., Rodríguez R., Pelegrí J.L. 2012. Salinity intrusion and convective mixing in the Atlantic Equatorial Undercurrent. Sci. Mar. 76S1: 117-129.
  • Davis R. 1985a. Drifter observations of coastal surface currents during CODE: The Method and the Descriptive View. J. Geophys. Res. 90(C3): 4741-4755. http://dx.doi.org/10.1029/JC090iC03p04741
  • Davis R. 1985b. Drifter observations of coastal surface currents during CODE: The Statistical and Dynamical views. J. Geophys. Res. 90(C3): 4756-4772. http://dx.doi.org/10.1029/JC090iC03p04756
  • Davis R., Sherman J., Dufour J. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Technol. 18: 982-993. http://dx.doi.org/10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2
  • Duarte C. 2015. Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24: 11-14. http://dx.doi.org/10.1002/lob.10008
  • Elosegui P., Wilkinson J., Olsson M., et al. 2012. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography. In: AGU Fall Meeting Abstracts, pp. C13E-0662.15
  • EPA. 1990. United States Environmental Protection Agency: Oil pollution act. Available at http://www.epa.gov/oem/content/lawsregs/opaover.htm
  • Font J., Salat J., Wang D. 1988. Lagrangian and Eulerian observation of inertial oscillations in the shelf break offshore the Ebro River Delta (Catalan Sea, NW Mediterranean). Rapp. Comm. Iint. Mer Médit. 31: 2.
  • Font J., Millot C., Salas J., et al. 1998. The drift of modified Atlantic water from the Alboran Sea to the Eastern Mediterranean. Sci. Mar. 62: 211-216. http://dx.doi.org/10.3989/scimar.1998.62n3211
  • Font J., Gabarró C., Julià A., et al. 2003. Oceanographic conditions during the wind and salinity experiment 2000 and 2001, NW Mediterranean Sea. In: Wursteisen P., Fletcher P. (eds), SP- 525- EuroSTARRS, WISE, LOSAC Campaigns. Ed.. ESA Publications Division, 51-59. UNIV./INST./ORG: ESTECISBN: 92-9092-835-2. ISSN: 0379-6566.
  • Font J., Camps A., Borges A., et al. 2010. SMOS: The challenging measurement of sea surface salinity from space. In: Proceedings of the IEEE, volume 98 (5): 649-665. Institute of Electrical and Electronics Engineers (IEEE). ISSN: 0018-9219.
  • Gabarró C., Vall-llosera M., Font J., et al. 2004. Determination of sea surface salinity and wind speed by L-band microwave radiometry from a fixed platform. Int. J. Remote Sens. 25: 111-128. http://dx.doi.org/10.1080/0143116031000115175
  • García-Ladona E., Font J., Del Río E., et al. 2005. The use of surface drifting floats in the monitoring of oil spills. The Prestige case. In: Proceedings of the 19 Biennial International Oil Spill Conference (IOSC), Miami, CD-ROM: 14718A. PMid:16196934
  • García-Olivares A., de Pablos J., Madrigal R. 2011. Sailing the Prestige out to sea. An independent analysis. Sci. Mar. 75: 533-548. http://dx.doi.org/10.3989/scimar.2011.75n3533
  • Gerin R., Poulain P.-M., Bussani A., et al. 2012. First TOSCA drifter experiment in the Gulf of Trieste (april 2012). Technical report, Instituto Nazionale di Oceanografia e di Geofisica Sperimentale. REL. OGS 2012/91 OCE 6 SIRE, Trieste, Italy, 32 pp.
  • Hansen D., Herman A. 1989. Temporal sampling requirements for surface drifting buoys in the Tropical Pacific. J. Atmos. Oceanic Technol. 6: 599-607. http://dx.doi.org/10.1175/1520-0426(1989)006<0599:TSRFSD>2.0.CO;2
  • Hansen D., Poulain P.-M. 1996. Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol. 13: 900-909. http://dx.doi.org/10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2
  • Hwang B., Elosegui P., Wilkinson J. 2015. Small-scale deformation of an Arctic sea ice flow detected by GPF and satellite imagery. Deep-Sea Res. Part II 120: 3-20. http://dx.doi.org/10.1016/j.dsr2.2015.01.007
  • IMO. 1993. ISM-CODE: International Safety Management code. International Maritime Organization. Available at: http://www.imo.org/OurWork/HumanElement/SafetyManagement/Pages/ISMCode.aspx
  • IMO. 2011. MARPOL (Consolidated Edition 2011). International Maritime Organization.
  • Isern-Fontanet J., Font J., García-Ladona E., et al. 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep- Sea Res. Part II 51: 3009-3028. http://dx.doi.org/10.1016/j.dsr2.2004.09.013
  • ITOPF. 2013. Oil tanker spill statistics. The International Tanker Owners Pollution Federation Limited. Available at: http://www.itopf.com/information%2Dservices/publications/ documents/OilSpillstats2013.pdf
  • Lagerloef G., Font J. 2010. SMOS and Aquarius/SAC-D missions: The Era of Spaceborne Salinity Measurements is about to begin. In: Barale V., Gower J., Alberotanza L. (eds). Oceanography from Space. Springer Science+Business Media B.V. pp. 35-58. http://dx.doi.org/10.1007/978-90-481-8681-5_3
  • Lumpkin R., Pazos M. 2007. Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. In: Griffa A., Kirwan Jr. A.D., Mariano A.K., et al. (eds). Lagrangian Analysis and Predictions of Coastal and Ocean Dynamics. Cambridge University Press., pp. 39-67. http://dx.doi.org/10.1017/CBO9780511535901.003
  • McPhaden M., Freitag H., Shepherd A. 1990. Moored salinity time series measurements at 0º-140º. J. Atmos. Oceanic Technol. 7: 568-575. http://dx.doi.org/10.1175/1520-0426(1990)007<0568:MSTSMA>2.0.CO;2
  • Millot C. 1991. Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn. Atmos. Oceans 15: 179-214. http://dx.doi.org/10.1016/0377-0265(91)90020-G
  • Morán X.A.G., Taupier-Letage I., Ruiz S., et al. 2001. Physical-biological coupling in the Algerian basin (SW Mediterranean): Influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton. Deep-Sea Res. Part I 48: 405-437. http://dx.doi.org/10.1016/S0967-0637(00)00042-X
  • Mémery L., Reverdin G., Paillet J., et al. 2005. Introduction to the POMME special section: Thermocline ventilation and biogeochemical tracer distribution in the northeast Atlantic ocean and impact of mesoscale dynamics. J. Geophys. Res. 110: C07S01. http://dx.doi.org/10.1029/2005JC002976
  • Nihoul J., Jamart B. (eds). 1989. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence. Proceedings of the 20th International liège Colloquium on ocean hydrodynamics. Elsevier, Amsterdam.
  • Niiler P. 2003. A brief history of drifter technology. In: Autonomous and Lagrangian Platforms and Sensors Workshop. La Jolla, CA, Scripps Institution of Oceanography. PMid:14668872
  • Niiler P., Davis R., White H. 1987. Water-following characteristics of a mixed layer drifter. Deep-Sea Res. Part I 34: 1867-1882. http://dx.doi.org/10.1016/0198-0149(87)90060-4
  • Niiler P., Sybrandy A., Poulain P., et al. 1995. Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. Part I 42: 1951-1964. http://dx.doi.org/10.1016/0967-0637(95)00076-3
  • Pe-a-Izquierdo J., Pelegrí J.L., Pastor M., et al. 2012. The continental slope current system between Cape Verde and the Canary Islands. Sci. Mar. 76S1: 65-78.
  • Reverdin G., Blouch P., Boutin J., et al. 2007. Surface salinity measurements COSMOS 2005 experiment in the Bay of Biscay. J. Atmos. Oceanic Technol. 24: 1643-1654. http://dx.doi.org/10.1175/JTECH2079.1
  • Reverdin G., Morisset S., Marié L., et al. 2015. Surface salinity in the north atlantic subtropical gyre during the STRASSE/SPURS summer 2012 cruise. Oceanography 28: 114-123. http://dx.doi.org/10.5670/oceanog.2015.09
  • Richardson P. 1983. Eddy kinetic energy in the north Atlantic from surface drifters. J. Geophys. Res. 88(C7): 4355-4367. http://dx.doi.org/10.1029/JC088iC07p04355
  • Roemmich D., Owens W. 2000. The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography 13: 45-50. http://dx.doi.org/10.5670/oceanog.2000.33
  • Roemmich D., Johnson G., Riser S., et al. 2009. The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography 22: 34-43. http://dx.doi.org/10.5670/oceanog.2009.36
  • Rossby T. 2007. Evolution of lagrangian methods in oceanography. In: Griffa A., Kirwan Jr. A.D., Mariano A.K., et al. (eds). Lagrangian Analysis and Predictions of Coastal and Ocean Dynamics, Cambridge University Press. pp. 1-38. http://dx.doi.org/10.1017/CBO9780511535901.002
  • Ruiz S., Font J., Emelianov M., et al. 2002. Deep structure of an open sea eddy in the Algerian basin. J. Mar. Syst. 33-34: 179-195. http://dx.doi.org/10.1016/S0924-7963(02)00058-1
  • Ruiz-Villarreal M., González-Pola C., del Rio G.D., et al. 2006. Oceanographic conditions in the north and northwest Iberia and their influence on the Prestige oil spill. Mar. Poll. Bull. 53: 220-238. http://dx.doi.org/10.1016/j.marpolbul.2006.03.011 PMid:16698046
  • Sabatés A., Olivar M.P., Salat J., et al. 2007. Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Prog. Oceanogr. 74: 355-376. http://dx.doi.org/10.1016/j.pocean.2007.04.017
  • Salas J. 2003. Evolution of the open-sea eddy ALGERS'98 in the Algerian basin with Lagrangian trajectories and remote sensing observations. J. Mar. Syst. 43: 105-131. http://dx.doi.org/10.1016/j.jmarsys.2003.08.001
  • Salas J., Millot C., Font J., et al. 2002. Analysis of mesoscale phenomena in the Algerian basin observed with drifting buoys and infrared images. Deep-Sea Res. Part I 49: 245-266. http://dx.doi.org/10.1016/S0967-0637(01)00052-8
  • Salat J. 2010. Agustí Julià i Brugués (1940-2009). Sci. Mar. 74: 197-201. http://dx.doi.org/10.3989/scimar.2010.74n1197
  • Salat J., Tintoré J., Font J., et al. 1992. Near-inertial motion on the shelf-slope front off northeast Spain. J. Geophys. Res. 97(C5): 7277-7281. http://dx.doi.org/10.1029/92JC00588
  • SOLAS. 1974. International convention for the safety of life at sea. International Maritim Organization (IMO). Available at: http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-%28SOLAS%29,-1974.aspx
  • Sotillo M., Alvarez-Fanjul E., Castanedo S., et al. 2008. Towards an operational system for oil spill forecast over Spanish waters: Initial developments and implementation. Mar. Poll. Bull. 56: 686-703. http://dx.doi.org/10.1016/j.marpolbul.2007.12.021 PMid:18321533
  • Sotillo M.G., Cailleau S., Lorente P., et al. 2015. The MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products and roadmap to the future Copernicus Service. J. Operational Oceanog. 8(1): 63-79. http://dx.doi.org/10.1080/1755876X.2015.1014663
  • Swenson M., Niiler P.P., Sybrandy A.L., et al. 1991. Feasibility of attaching seacats to TOGA drifter. Ref. Ser., Scripps Inst. of Oceanogr., La Jolla, Calif., pp. 91-30.
  • Swenson M., Niiler P.P., Sybrandy A.L., et al. 1992. Drifter observations of a cold filament off Point Arena, California in july 1988. J. Geophys. Res. 97(C3): 3593-3610. http://dx.doi.org/10.1029/91JC02736
  • Sybrandy A., Niiler P., Sombardier L. 1992. Technical improvements to the WOCE/TOGA lagrangian drifter. In: Proceedings of the OCEANS'92 conference on mastering the oceans Through Technology, volume 2, pp. 718-720. IEEE. http://dx.doi.org/10.1109/OCEANS.1992.607671
  • Wang D., Vieira M., Salat J., et al. 1988. A shelf/slope frontal filament off the northeast Spanish coast. J. Mar. Res. 46: 321-332. http://dx.doi.org/10.1357/002224088785113586
  • WMO 1988. WOCE surface velocity program planning committee report of first meeting: SVP-1 and TOGA pan-Pacific surface current study. World Climate Research Program Wormley: World Meteorological Organization. 33 pp. WMO/TD-No.323, WCRP-26.