Modelling the number of olive groves in Spanish municipalities

  1. Huete, Maria-Dolores 1
  2. Marmolejo, Juan A. 2
  1. 1 University of Granada, Faculty of Labour Sciences, Dept. Statistics and Operational Research. C/ Rector López Argueta s/n, 18071-Granada, Spain
  2. 2 University of Granada, Faculty of Social Science, Dept. Statistics and Operational Research. C/ Santander 1, 52071-Melilla, Spain
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Ano de publicación: 2016

Volume: 14

Número: 1

Tipo: Artigo

DOI: 10.5424/SJAR/2016141-7687 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Spanish journal of agricultural research

Obxectivos de Desenvolvemento Sustentable

Resumo

The univariate generalized Waring distribution (UGWD) is presented as a new model to describe the goodness of fit, applicable in the context of agriculture. In this paper, it was used to model the number of olive groves recorded in Spain in the 8,091 municipalities recorded in the 2009 Agricultural Census, according to which the production of oil olives accounted for 94% of total output, while that of table olives represented 6% (with an average of 44.84 and 4.06 holdings per Spanish municipality, respectively). UGWD is suitable for fitting this type of discrete data, with strong left-sided asymmetry. This novel use of UGWD can provide the foundation for future research in agriculture, with the advantage over other discrete distributions that enables the analyst to split the variance. After defining the distribution, we analysed various methods for fitting the parameters associated with it, namely estimation by maximum likelihood, estimation by the method of moments and a variant of the latter, estimation by the method of frequencies and moments. For oil olives, the chi-square goodness of fit test gives p-values of 0.9992, 0.9967 and 0.9977, respectively. However, a poor fit was obtained for the table olive distribution. Finally, the variance was split, following Irwin, into three components related to random factors, external factors and internal differences. For the distribution of the number of olive grove holdings, this splitting showed that random and external factors only account about 0.22% and 0.05%. Therefore, internal differences within municipalities play an important role in determining total variability.

Referencias bibliográficas

  • Anta J, Palacios J, Guerrero F, 2005. La cultura del olivo. Ecología, economía, sociedad. University of Jaén, Spain.
  • Barranco D, Fernández-Escobar R, Rallo L, 2008. El cultivo del olivo. Mundi-Prensa, Spain.
  • Beal G, Rescia R, 1953. A generalization of Neyman's contagious distribution. Biometrics 9: 354-386. http://dx.doi.org/10.2307/3001711
  • Boxenbaum H, Pivinski F, Ruberg SJ, 1987. Publication rates of pharmaceutical scientists: Application of the Waring distribution. Drug Metab Rev 18: 553-571. http://dx.doi.org/10.3109/03602538708994132
  • Bravo-Ureta B, Cocchi H, Solí D, 2006. Output diversification among small-scale hillside farmers in El Salvador. Office of Evaluation and Oversight. Working Paper OVE/WP-17/06.
  • Brotons L, Wolff A, Paulusc G, Martin JL, 2005. Efect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biol Conserv 124(3): 407-414. http://dx.doi.org/10.1016/j.biocon.2005.01.046
  • Canal L, Micciolo R, 1999. Modelli probabilisciti per l'analisi dei contatti psichiatrici. Epidem Psich Soc 8: 47-55. http://dx.doi.org/10.1017/S1121189X0000751X
  • Danial E, 1988. Generalization to the sufficient conditions for a discrete random variable to be infinitely divisible. Stat Probabil Lett 6: 379-382. http://dx.doi.org/10.1016/0167-7152(88)90095-8
  • Devroye L, 1992. Random variate generation for the digamma and trigamma distributions. J Stat Comput Sim 43: 197-216. http://dx.doi.org/10.1080/00949659208811438
  • Duerr H, Dietz K, 2000. Stochastic models for aggregation processes. Math Biosci 165: 135-145. http://dx.doi.org/10.1016/S0025-5564(00)00014-6
  • Fernández-Jarne J, Martínez-Losa E, Prado-Santamaría M, Brugarolas-Brufaua C, Serrano-Martínez M, Martínez-González MA, 2001. Risk of first non-fatal myocardial infarction negatively associated with olive oil consumption: a case-control study in Spain. I J Epidemiol 31(2): 474-480.
  • Ferreri C, 1984. On the hypergeometric birth process and some implications about the gamma distribution representation. J Roy Stat Soc B 46:52-57.
  • Gimeno E, Fitó M, Lamuela-Raventós RM, Castellote AI, Covas M, Farré M, Torre-Boronat MC, López-Sabater MC, 2002. Effect of ingestion of virgin olive oil on human low-density lipoprotein composition. Eur J Clin Nutr 56(2): 114-120. http://dx.doi.org/10.1038/sj.ejcn.1601293
  • Hirvonen K, Hoddinott J, 2004. Agricultural production and children's diets: Evidence from rural Ethiopia. International Food Policy Research Institute. Working paper 69. http://www.ifpri.org/.
  • INE, 2009. Agrarian Census. National Institute of Statistics, Spain. http://www.ine.es.
  • Irwin J, 1963. The place of mathematics in medical and biological statistics. J Roy Stat Soc A Sta 126: 1-44.
  • Irwin J, 1968. The generalized Waring distribution applied to accident theory. J Roy Stat Soc A Sta 131: 205-207.
  • Irwin J, 1975. The generalized Waring distribution. J Roy Stat Soc A Sta 138: 18-31, 204-227, 374-378.
  • Katti S, 1966. Interrelations among generalized distributions and their components. Biometrics 22: 44-52. http://dx.doi.org/10.2307/2528212
  • Katti S, Gurland J, 1961. The Poisson Pascal distribution. Biometrics 17: 527-538. http://dx.doi.org/10.2307/2527853
  • Kemp A, 2001. The q-beta-geometric distribution as a model for fecundability. Commun Stat Theory 30: 2373-2384. http://dx.doi.org/10.1081/STA-100107692
  • Kendall M, Stuart A, 1969. The advanced theory of statistics, vol I, vol II. Griffin, London.
  • Kery M, Royle A, Schmid H, 2005. Modeling avian abundance from replicated counts using binomial mixture models. Ecol Appl 15(4): 1450-1461. http://dx.doi.org/10.1890/04-1120
  • Kim CS, Schluter G, Schaible G, Mishra A, Hallahan C, 2005. A decomposed negative binomial model of structural change: a theoretical and empirical application to U.S. agriculture. Can J Agr Econ 53: 161-176. http://dx.doi.org/10.1111/j.1744-7976.2005.00396.x
  • Lambarraa F, Serra T, Gil JM, 2007. Technical efficiency analysis and decomposition of productivity growth of Spanish olive farms. Span J Agric Res 5(3): 259-270. http://dx.doi.org/10.5424/sjar/2007053-247
  • López-Miranda J, Pérez-Jiménez F,Ros E, De Caterina R, Badimón L, Covase MI, Escrich E, Ordovás JM, Soriguerh F, Abiá R et al., 2010. Olive oil and health. Nutr Metab Cardiovas 20(4): 284-294. http://dx.doi.org/10.1016/j.numecd.2009.12.007
  • MAGRAMA, 2012. Statistical yearbook, Technical report. Ministry of agriculture, food and environment. http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/.
  • Marmolejo-Martín J, 2003. Métodos de generación de distribuciones. Aplicación a la distribución de Waring. Doctoral thesis. Univ. of Granada, Spain.
  • Monton J, Baird D, 1990. Spatial distribution of dung patches under sheep grazing. New Zeal J Agr Res 33: 285-294. http://dx.doi.org/10.1080/00288233.1990.10428421
  • Newbold E, 1926. A contribution to the study of the human factor in the causation of accidents. Industrial Health Research Board Report, 34. London.
  • Owen R, Giacosa A, Hull W, Haubner R, Wuertele G, Spiegelharder B, Bartsch H, 2000. Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1(2): 107-112. http://dx.doi.org/10.1016/S1470-2045(00)00015-2
  • Paxton K, Mishra A, Chintawar S, Roberts R, Larson J, English B, Lambert D, Marra M, Larkin S, Reeves J et al., 2011. Intensity of precision agriculture technology adoption by cotton producers. Agr Resource Econ Rev 40(1): 133-144.
  • Ridout M, Demétrio C, Hinde J, 1998. Models for count data with many zeros. International Biometric Conference. Cape Town.
  • Rodríguez-Avi J, Conde-Sánchez A, Sáez-Castillo AJ, Olmo MJ, 2003. Estimation of parameters in gaussian hypergeometric distributions. Stat Theory 32: 1101-1118. http://dx.doi.org/10.1081/STA-120021322
  • Rodríguez-Avi J, Conde-Sánchez A, Sáez-Castillo AJ, Olmo MJ, 2007. A new generalization of the Waring distribution. Comput Stat Data An 51: 6138-6150. http://dx.doi.org/10.1016/j.csda.2006.12.029
  • Royle A, 2004. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60: 108-115. http://dx.doi.org/10.1111/j.0006-341X.2004.00142.x
  • Sáez-Castillo AJ, Vílchez-López S, Olmo-Jiménez MJ, Rodríguez-Avi J, Conde-Sánchez A, Martínez-Rodríguez AM, 2010. GWRM package in "the r-project for statistical computing". Technical report. http://cran.r-project.org/web/packages/GWRM/index.html.
  • Sarabia JM, Castillo E, 2003. Extensiones multivariantes de la distribución de Waring generalizada. Proc XVII Nat Cong Statistic and Operational Research, Lleida (Spain), Apr 8-11. pp: 344-354.
  • Sayadi S, Ruiz P, Vázquez A, 2012. Prioridades de I+D en el sector agroalimentario andaluz: especial referencia a su complejo olivarero-oleícola. Rev Esp Estudios Agrosoc Pesq 233: 129-178.
  • Wolfran D, 2003. Applying informetric characteristics of databases to ir system file desing, part I: Informetric models. Inform Process Manag 28: 121-133. http://dx.doi.org/10.1016/0306-4573(92)90098-K
  • Xekalaki E, 1983a. Hazard functions and life distributions in discrete time. Comm StatTheory 12: 2503-2509. http://dx.doi.org/10.1080/03610928308828617
  • Xekalaki E, 1983b. Infinite divisibility, completeness and regression properties of the univariate generalized waring distribution. Ann I Stat Math 35: 279-289. http://dx.doi.org/10.1007/BF02480983
  • Xekalaki E, 1983c. The univariate generalized Waring distribution in relation to accident theory: proneness, spells or contagion? Biometrics 39: 887-895. http://dx.doi.org/10.2307/2531324